14 research outputs found

    The ATLAS Level-1 Trigger : Status of the System and First Results from Cosmic-Ray Data

    Get PDF
    The ATLAS detector at CERN's Large Hadron Collider (LHC) will be exposed to proton-proton collisions from beams crossing at 40 MHz. At the design luminosity of 10^34 cm^-2 s^-1 there are on average 23 collisions per bunch crossing. A three-level trigger system will select potentially interesting events in order to reduce the read-out rate to about 200 Hz. The first trigger level is implemented in custom-built electronics and makes an initial fast selection based on detector data of coarse granularity. It has to reduce the rate by a factor of 10^4 to less than 100 kHz. The other two consecutive trigger levels are in software and run on PC farms. We present an overview of the first-level trigger system and report on the current installation status. Moreover, we show analysis results of cosmic-ray data recorded in situ at the ATLAS experimental site with final or close-to-final hardware.The ATLAS detector at CERN's Large Hadron Collider (LHC) will be exposed to proton-proton collisions from beams crossing at 40 MHz. At the design luminosity of 10^34 cm^-2 s^-1 there are on average 23 collisions per bunch crossing. A three-level trigger system will select potentially interesting events in order to reduce the read-out rate to about 200 Hz. The first trigger level is implemented in custom-built electronics and makes an initial fast selection based on detector data of coarse granularity. It has to reduce the rate by a factor of 10^4 to less than 100 kHz. The other two consecutive trigger levels are in software and run on PC farms. We present an overview of the first-level trigger system and report on the current installation status. Moreover, we show analysis results of cosmic-ray data recorded in situ at the ATLAS experimental site with final or close-to-final hardware

    Calorimetry triggering in ATLAS

    No full text
    International audienceThe ATLAS experiment is preparing for data taking at 14 TeV collision energy. A rich discovery physics program is being prepared in addition to the detailed study of Standard Model processes which will be produced in abundance. The ATLAS multi-level trigger system is designed to accept one event in 2 · 105 to enable the selection of rare and unusual physics events. The ATLAS calorimeter system is a precise instrument, which includes liquid Argon electro-magnetic and hadronic components as well as a scintillator-tile hadronic calorimeter. All these components are used in the various levels of the trigger system. A wide physics coverage is ensured by inclusively selecting events with candidate electrons, photons, taus, jets or those with large missing transverse energy. The commissioning of the trigger system is being performed with cosmic ray events and by replaying simulated Monte Carlo events through the trigger and data acquisition system

    AGATA-Advanced GAmma Tracking Array

    Get PDF
    AGATA CollaborationThe Advanced GAmma Tracking Array (AGATA) is a European project to develop and operate the next generation gamma-ray spectrometer. AGATA is based on the technique of gamma-ray energy tracking in electrically segmented high-purity germanium crystals. This technique requires the accurate determination of the energy, time and position of every interaction as a gamma ray deposits its energy within the detector volume. Reconstruction of the full interaction path results in a detector with very high efficiency and excellent spectral response. The realisation of gamma-ray tracking and AGATA is a result of many technical advances. These include the development of encapsulated highly segmented germanium detectors assembled in a triple cluster detector cryostat, an electronics system with fast digital sampling and a data acquisition system to process the data at a high rate. The full characterisation of the crystals was measured and compared with detector-response simulations. This enabled pulse-shape analysis algorithms, to extract energy, time and position, to be employed. In addition, tracking algorithms for event reconstruction were developed. The first phase of AGATA is now complete and operational in its first physics campaign. In the future AGATA will be moved between laboratories in Europe and operated in a series of campaigns to take advantage of the different beams and facilities available to maximise its science output. The paper reviews all the achievements made in the AGATA project including all the necessary infrastructure to operate and support the spectrometer. (C) 2011 Elsevier B.V. All rights reserved.AGATA and this work is supported by the European funding bodies and the EU Contract RII3-CT-2004-506065, the German BMBF under Grants 06K-167 and 06KY205I, the Swedish Research Council and the Knut and Alice Wallenberg Foundation, UK EPSRC Engineering and Physical Sciences Research Council, UK STFC Science and Technology Facilities Council, AWE plc, Scientific and Technological Research Council of Turkey (Proj. nr. 106T055) and Ankara University (BAP Proj. nr. 05B4240002), the Polish Ministry of Science and Higher Education under Grant DPN/N190/AGATA/2009, the Spanish MICINN under grants FPA2008-06419 and FPA2009-13377-C02-02, the Spanish Consolider-Ingenio 2010 Programme CPAN (contract number CSD2007-00042) the Generalitat Valenciana under Grant PROMETEO/2010/101, and research performed in the frame of the GSI-IN2P3 collaboration agreement number 02-42. MICINN, Spain, and INFN, Italy, through the AIC10-D-000568 bilateral action.Peer Reviewe

    ATLAS calorimeter performance

    No full text

    ATLAS computing technical proposal

    No full text

    ATLAS computing technical proposal

    No full text
    corecore