265 research outputs found

    Viscosity Approximating Solutions to ODE Systems That Admit Shocks, and Their Limits

    Get PDF
    AbstractWe study nonlinear systems of ordinary differential equations that arise when considering stationary one-dimensional systems of conservation laws with forcing terms defined in a bounded interval. We construct weak entropy solutions of bounded variation which are pointwise and L1 limits of solutions of regularized, i.e., viscous, systems, where the limit is taken in the viscosity parameter. In particular, no oscillations occur either for the viscous solutions or for the inviscid one. We also discuss the possible formation of boundary layers when boundary values are prescribed for the viscous regularized equations. As applications, first we show the existence of transonic solutions of bounded variation with strong shocks for the equation of stationary gas flow in a duct of variable area as a pointwise limit of artificial viscosity solutions. We analyze their properties depending on the kind of duct as well as on the boundary data of the regularized problem. Second we show that the model applies to the hydrodynamic modeling for semiconductor devices for some particular heat conduction terms and added diffusion to the energy equation. In particular, we show that under the assumption of bounds for the state variables, there exists a regular solution for that particular viscous heat conducting model. Also, if the bounds for the state variables are uniform in the vanishing parameters, we obtain the existence of an inviscid weak entropy solution of bounded variation as a pointwise limit of the regular ones

    Stability of Transonic Shock Solutions for One-Dimensional Euler-Poisson Equations

    Full text link
    In this paper, both structural and dynamical stabilities of steady transonic shock solutions for one-dimensional Euler-Poission system are investigated. First, a steady transonic shock solution with supersonic backgroumd charge is shown to be structurally stable with respect to small perturbations of the background charge, provided that the electric field is positive at the shock location. Second, any steady transonic shock solution with the supersonic background charge is proved to be dynamically and exponentially stable with respect to small perturbation of the initial data, provided the electric field is not too negative at the shock location. The proof of the first stability result relies on a monotonicity argument for the shock position and the downstream density, and a stability analysis for subsonic and supersonic solutions. The dynamical stability of the steady transonic shock for the Euler-Poisson equations can be transformed to the global well-posedness of a free boundary problem for a quasilinear second order equation with nonlinear boundary conditions. The analysis for the associated linearized problem plays an essential role

    Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider

    Get PDF
    This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the ϒ(4S), ϒ(3S), and ϒ(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-→e+e- and (for the ϒ(4S) only) e+e-→μ+μ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-→e+e- and e+e-→μ+μ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the ϒ(3S) and ϒ(2S) resonances, an additional uncertainty arises due to ϒ→e+e-X background. For data collected off the ϒ resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the ϒ(4S), 0.58% (0.72%) for the ϒ(3S), and 0.68% (0.88%) for the ϒ(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physiquedes Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)

    Multidimensional Conservation Laws: Overview, Problems, and Perspective

    Full text link
    Some of recent important developments are overviewed, several longstanding open problems are discussed, and a perspective is presented for the mathematical theory of multidimensional conservation laws. Some basic features and phenomena of multidimensional hyperbolic conservation laws are revealed, and some samples of multidimensional systems/models and related important problems are presented and analyzed with emphasis on the prototypes that have been solved or may be expected to be solved rigorously at least for some cases. In particular, multidimensional steady supersonic problems and transonic problems, shock reflection-diffraction problems, and related effective nonlinear approaches are analyzed. A theory of divergence-measure vector fields and related analytical frameworks for the analysis of entropy solutions are discussed.Comment: 43 pages, 3 figure

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter

    On a coupled PDE model for image restoration

    Full text link
    In this paper, we consider a new coupled PDE model for image restoration. Both the image and the edge variables are incorporated by coupling them into two different PDEs. It is shown that the initial-boundary value problem has global in time dissipative solutions (in a sense going back to P.-L. Lions), and several properties of these solutions are established. This is a rough draft, and the final version of the paper will contain a modelling part and numerical experiments

    Observation of the baryonic decay B \uaf 0 \u2192 \u39bc+ p \uaf K-K+

    Get PDF
    We report the observation of the baryonic decay B\uaf0\u2192\u39bc+p\uafK-K+ using a data sample of 471 7106 BB\uaf pairs produced in e+e- annihilations at s=10.58GeV. This data sample was recorded with the BABAR detector at the PEP-II storage ring at SLAC. We find B(B\uaf0\u2192\u39bc+p\uafK-K+)=(2.5\ub10.4(stat)\ub10.2(syst)\ub10.6B(\u39bc+)) 710-5, where the uncertainties are statistical, systematic, and due to the uncertainty of the \u39bc+\u2192pK-\u3c0+ branching fraction, respectively. The result has a significance corresponding to 5.0 standard deviations, including all uncertainties. For the resonant decay B\uaf0\u2192\u39bc+p\uaf\u3c6, we determine the upper limit B(B\uaf0\u2192\u39bc+p\uaf\u3c6)<1.2 710-5 at 90% confidence level

    Search for Darkonium in e+e- Collisions

    Get PDF
    Collider searches for dark sectors, new particles interacting only feebly with ordinary matter, have largely focused on identifying signatures of new mediators, leaving much of dark sector structures unexplored. In particular, the existence of dark matter bound states (darkonia) remains to be investigated. This possibility could arise in a simple model in which a dark photon (A0 ) is light enough to generate an attractive force between dark fermions. We report herein a search for a JPC ¼ 1−− darkonium state, the ϒD, produced in the reaction eþe− → γϒD, ϒD → A0 A0 A0 , where the dark photons subsequently decay into pairs of leptons or pions, using 514 fb−1 of data collected with the BABAR detector. No significant signal is observed, and we set bounds on the γ − A0 kinetic mixing as a function of the dark sector coupling constant for 0.001 < mA0 < 3.16 GeV and 0.05 < mϒD < 9.5 GeV.publishedVersio

    A search for the decay B+K+ννˉB^+ \to K^+ \nu \bar{\nu}

    Get PDF
    We search for the rare flavor-changing neutral-current decay B+K+ννˉB^+ \to K^+ \nu \bar{\nu} in a data sample of 82 fb1^{-1} collected with the {\sl BABAR} detector at the PEP-II B-factory. Signal events are selected by examining the properties of the system recoiling against either a reconstructed hadronic or semileptonic charged-B decay. Using these two independent samples we obtain a combined limit of B(B+K+ννˉ)<5.2×105{\mathcal B}(B^+ \to K^+ \nu \bar{\nu})<5.2 \times 10^{-5} at the 90% confidence level. In addition, by selecting for pions rather than kaons, we obtain a limit of B(B+π+ννˉ)<1.0×104{\mathcal B}(B^+ \to \pi^+ \nu \bar{\nu})<1.0 \times 10^{-4} using only the hadronic B reconstruction method.Comment: 7 pages, 8 postscript figures, submitted to Phys. Rev. Let

    High-reflectivity broadband distributed Bragg reflector lattice matched to ZnTe

    Full text link
    We report on the realization of a high quality distributed Bragg reflector with both high and low refractive index layers lattice matched to ZnTe. Our structure is grown by molecular beam epitaxy and is based on binary compounds only. The high refractive index layer is made of ZnTe, while the low index material is made of a short period triple superlattice containing MgSe, MgTe, and ZnTe. The high refractive index step of Delta_n=0.5 in the structure results in a broad stopband and the reflectivity coefficient exceeding 99% for only 15 Bragg pairs.Comment: 4 pages, 3 figure
    corecore