In this paper, both structural and dynamical stabilities of steady transonic
shock solutions for one-dimensional Euler-Poission system are investigated.
First, a steady transonic shock solution with supersonic backgroumd charge is
shown to be structurally stable with respect to small perturbations of the
background charge, provided that the electric field is positive at the shock
location. Second, any steady transonic shock solution with the supersonic
background charge is proved to be dynamically and exponentially stable with
respect to small perturbation of the initial data, provided the electric field
is not too negative at the shock location. The proof of the first stability
result relies on a monotonicity argument for the shock position and the
downstream density, and a stability analysis for subsonic and supersonic
solutions. The dynamical stability of the steady transonic shock for the
Euler-Poisson equations can be transformed to the global well-posedness of a
free boundary problem for a quasilinear second order equation with nonlinear
boundary conditions. The analysis for the associated linearized problem plays
an essential role