171 research outputs found
Caught in the act: direct detection of Galactic Bars in the buckling phase
The majority of massive disk galaxies, including our own, have stellar bars with vertically thick inner region, known as âboxy/peanut-shapedâ (B/P) bulges. The most commonly suggested mechanism for the formation of B/P bulges is a violent vertical âbucklingâ instability in the bar, something that has been seen in N-body simulations for over 20 years, but never identiïŹed in real galaxies. Here, we present the ïŹrst direct observational evidence for ongoing buckling in two nearby galaxies (NGC 3227 and NGC 4569), including characteristic asymmetric isophotes and (in NGC 4569) stellar kinematic asymmetries that match buckling in simulations. This conïŹrms that the buckling instability takes place and produces B/P bulges in real galaxies. A toy model of bar evolution yields a local fraction of buckling bars consistent with observations if the buckling phase lasts
âŒ0.5â1 Gyr, in agreement with simulations
Foreign Subtitles Help but Native-Language Subtitles Harm Foreign Speech Perception
Understanding foreign speech is difficult, in part because of unusual mappings between sounds and words. It is known that listeners in their native language can use lexical knowledge (about how words ought to sound) to learn how to interpret unusual speech-sounds. We therefore investigated whether subtitles, which provide lexical information, support perceptual learning about foreign speech. Dutch participants, unfamiliar with Scottish and Australian regional accents of English, watched Scottish or Australian English videos with Dutch, English or no subtitles, and then repeated audio fragments of both accents. Repetition of novel fragments was worse after Dutch-subtitle exposure but better after English-subtitle exposure. Native-language subtitles appear to create lexical interference, but foreign-language subtitles assist speech learning by indicating which words (and hence sounds) are being spoken
Stellar populations of bulges at low redshift
This chapter summarizes our current understanding of the stellar population
properties of bulges and outlines important future research directions.Comment: Review article to appear in "Galactic Bulges", Editors: Laurikainen
E., Peletier R., Gadotti D., Springer Publishing. 34 pages, 12 figure
The Milky Way Bulge: Observed properties and a comparison to external galaxies
The Milky Way bulge offers a unique opportunity to investigate in detail the
role that different processes such as dynamical instabilities, hierarchical
merging, and dissipational collapse may have played in the history of the
Galaxy formation and evolution based on its resolved stellar population
properties. Large observation programmes and surveys of the bulge are providing
for the first time a look into the global view of the Milky Way bulge that can
be compared with the bulges of other galaxies, and be used as a template for
detailed comparison with models. The Milky Way has been shown to have a
box/peanut (B/P) bulge and recent evidence seems to suggest the presence of an
additional spheroidal component. In this review we summarise the global
chemical abundances, kinematics and structural properties that allow us to
disentangle these multiple components and provide constraints to understand
their origin. The investigation of both detailed and global properties of the
bulge now provide us with the opportunity to characterise the bulge as observed
in models, and to place the mixed component bulge scenario in the general
context of external galaxies. When writing this review, we considered the
perspectives of researchers working with the Milky Way and researchers working
with external galaxies. It is an attempt to approach both communities for a
fruitful exchange of ideas.Comment: Review article to appear in "Galactic Bulges", Editors: Laurikainen
E., Peletier R., Gadotti D., Springer Publishing. 36 pages, 10 figure
Studies on Preparation of Photosensitizer Loaded Magnetic Silica Nanoparticles and Their Anti-Tumor Effects for Targeting Photodynamic Therapy
As a fast developing alternative of traditional therapeutics, photodynamic therapy (PDT) is an effective, noninvasive, nontoxic therapeutics for cancer, senile macular degeneration, and so on. But the efficacy of PDT was compromised by insufficient selectivity and low solubility. In this study, novel multifunctional silica-based magnetic nanoparticles (SMNPs) were strategically designed and prepared as targeting drug delivery system to achieve higher specificity and better solubility. 2,7,12,18-Tetramethyl-3,8-di-(1-propoxyethyl)-13,17-bis-(3-hydroxypropyl) porphyrin, shorted as PHPP, was used as photosensitizer, which was first synthesized by our lab with good PDT effects. Magnetite nanoparticles (Fe3O4) and PHPP were incorporated into silica nanoparticles by microemulsion and solâgel methods. The prepared nanoparticles were characterized by transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and fluorescence spectroscopy. The nanoparticles were approximately spherical with 20â30 nm diameter. Intense fluorescence of PHPP was monitored in the cytoplasm of SW480 cells. The nanoparticles possessed good biocompatibility and could generate singlet oxygen to cause remarkable photodynamic anti-tumor effects. These suggested that PHPP-SMNPs had great potential as effective drug delivery system in targeting photodynamic therapy, diagnostic magnetic resonance imaging and magnetic hyperthermia therapy
Bulge growth through disk instabilities in high-redshift galaxies
The role of disk instabilities, such as bars and spiral arms, and the
associated resonances, in growing bulges in the inner regions of disk galaxies
have long been studied in the low-redshift nearby Universe. There it has long
been probed observationally, in particular through peanut-shaped bulges. This
secular growth of bulges in modern disk galaxies is driven by weak,
non-axisymmetric instabilities: it mostly produces pseudo-bulges at slow rates
and with long star-formation timescales. Disk instabilities at high redshift
(z>1) in moderate-mass to massive galaxies (10^10 to a few 10^11 Msun of stars)
are very different from those found in modern spiral galaxies. High-redshift
disks are globally unstable and fragment into giant clumps containing 10^8-10^9
Msun of gas and stars each, which results in highly irregular galaxy
morphologies. The clumps and other features associated to the violent
instability drive disk evolution and bulge growth through various mechanisms,
on short timescales. The giant clumps can migrate inward and coalesce into the
bulge in a few 10^8 yr. The instability in the very turbulent media drives
intense gas inflows toward the bulge and nuclear region. Thick disks and
supermassive black holes can grow concurrently as a result of the violent
instability. This chapter reviews the properties of high-redshift disk
instabilities, the evolution of giant clumps and other features associated to
the instability, and the resulting growth of bulges and associated sub-galactic
components.Comment: 37 pages, 9 figures. Invited refereed review to appear in "Galactic
Bulges", E. Laurikainen, D. Gadotti, R. Peletier (eds.), Springe
Evidence for Shared Cognitive Processing of Pitch in Music and Language
Language and music epitomize the complex representational and computational capacities of the human mind. Strikingly similar in their structural and expressive features, a longstanding question is whether the perceptual and cognitive mechanisms underlying these abilities are shared or distinct â either from each other or from other mental processes. One prominent feature shared between language and music is signal encoding using pitch, conveying pragmatics and semantics in language and melody in music. We investigated how pitch processing is shared between language and music by measuring consistency in individual differences in pitch perception across language, music, and three control conditions intended to assess basic sensory and domain-general cognitive processes. Individualsâ pitch perception abilities in language and music were most strongly related, even after accounting for performance in all control conditions. These results provide behavioral evidence, based on patterns of individual differences, that is consistent with the hypothesis that cognitive mechanisms for pitch processing may be shared between language and music.National Science Foundation (U.S.). Graduate Research Fellowship ProgramEunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.) (Grant 5K99HD057522
The VIMOS Public Extragalactic Redshift Survey (VIPERS) : galaxy segregation inside filaments at z â 0.7
We present the first quantitative detection of large-scale filamentary structure at z â 0.7 in the large cosmological volume probed by the VIMOS Public Extragalactic Redshift Survey (VIPERS). We use simulations to show the capability of VIPERS to recover robust topological features in the galaxy distribution, in particular the filamentary network. We then investigate how galaxies with different stellar masses and stellar activities are distributed around the filaments and find a significant segregation, with the most massive or quiescent galaxies being closer to the filament axis than less massive or active galaxies. The signal persists even after down-weighting the contribution of peak regions. Our results suggest that massive and quiescent galaxies assemble their stellar mass through successive mergers during their migration along filaments towards the nodes of the cosmic web. On the other hand, low-mass star-forming galaxies prefer the outer edge of filaments, a vorticity rich region dominated by smooth accretion, as predicted by the recent spin alignment theory. This emphasizes the role of large scale cosmic flows in shaping galaxy properties.PostprintPeer reviewe
- âŠ