140 research outputs found

    Insight in the phenolic composition and antioxidative properties of Vitis vinifera leaves extracts

    Get PDF
    In the present investigation, leaf ethanolic extracts of Vitis vinifera were assayed for their polyphenolic composition and antioxidative properties. The leaves were collected during lush vegetation period (May leaves) and after the harvest (September leaves). Air dried plant material was homogenized and the polyphenolic constituents were extracted using conventional solvent extraction procedure. Total phenolics, flavonoids, non-flavonoids, catechins and flavanols were determined using spectrophotometric methods. Both extracts were very rich in phenolic compounds. The concentration of total phenols in September leaves extract was about 30 % higher compared to May leaves extract, due to the increase of flavonoid (catechin) fraction. Non-flavonoid compound content was almost equal in both extracts. The amount of flavanols, determined with p-dimethylaminocinnamaldehyde method, was taken as indicator of flavan-3-ol monomers, while high catechin content determined by vanillin method, indicated the presence of polymeric fraction. The total catechin content in September leaves extract was more than 3 folds higher in comparison to May leaves extract. Principal phenolic compounds were separated by high pressure liquid chromatography on reverse phase. Antioxidant properties, determined as: 2,2-diphenyl-1-picrylhydrazyl radical and 2,2\u27-azinobis-(3-ethylbenzthiazoline-6-sulfonate) radical cation scavenging ability, ferric reducing/antioxidant power, Fe2+ chelating activity, and using β-carotene bleaching assay, were total phenol concentration dependent. September leaves extract had better free radical scavenging capacity, higher reducing power, and was more efficient in protecting the oxidation of emulsified linoleic acid, in comparison with May leaves extract which showed better chelating ability. The presence of active phenolic compounds: phenolic acids (3-hydroxybenzoic acid, caffeic acid, gallic acid, vanillin acid), flavonoids ((+)-catechin, (-)-epicatechin, apigenin, myricetin, quercetin, quercetin-4\u27-glucoside, rutin), and stilbenes (trans-resveratrol and resveratrol derivatives) was confirmed in both extracts. According to the results achieved, vine leaf extracts can be considered rich natural source of polyphenols with significant antioxidant properties

    Acute promyelocytic leukemia after whole brain irradiation of primary brain lymphomainan HIV-infected patient

    Get PDF
    The occurrence of acute promyelocytic leukemia (APL) in HIV-infected patients has been reported in only five cases. Due to a very small number of reported HIV/APL patients who have been treated with different therapies with the variable outcome, the prognosis of APL in the setting of the HIV-infection is unclear. Here, we report a case of an HIV-patient who developed APL and upon treatment entered a complete remission. A 25-years old male patient was diagnosed with HIV-infection in 1996, but remained untreated. In 2004, the patient was diagnosed with primary central nervous system lymphoma. We treated the patient with antiretroviral therapy and whole-brain irradiation, resulting in complete remission of the lymphoma. In 2006, prompted by a sudden neutropenia, we carried out a set of diagnostic procedures, revealing APL. Induction therapy consisted of standard treatment with all-trans-retinoic-acid (ATRA) and idarubicin. Subsequent cytological and molecular analysis of bone marrow demonstrated complete hematological and molecular remission. Due to the poor general condition, consolidation treatment with ATRA was given in March and April 2007. The last follow-up 14 months later, showed sustained molecular APL remission. In conclusion, we demonstrated that a complete molecular APL remission in an HIV-patient was achieved by using reduced-intensity treatment

    Electronic Band Structure Changes across the Antiferromagnetic Phase Transition of Exfoliated MnPS3 Flakes Probed by μ-ARPES

    Get PDF
    Exfoliated magnetic 2D materials enable versatile tuning of magnetization, e.g., by gating or providing proximity-induced exchange interaction. However, their electronic band structure after exfoliation has not been probed, presumably due to their photochemical sensitivity. Here, we provide micrometer-scale angle-resolved photoelectron spectroscopy of the exfoliated intralayer antiferromagnet MnPS3 above and below the Néel temperature down to one monolayer. Favorable comparison with density functional theory calculations enables identifying the orbital character of the observed bands. Consistently, we find pronounced changes across the Néel temperature for bands consisting of Mn 3d and 3p levels of adjacent S atoms. The deduced orbital mixture indicates that the superexchange is relevant for the magnetic interaction. There are only minor changes between monolayer and thicker films, demonstrating the predominant 2D character of MnPS3. The novel access is transferable to other MPX3 materials (M: transition metal, P: phosphorus, X: chalcogenide), providing several antiferromagnetic arrangements

    A meta-analysis of genome-wide data from five European isolates reveals an association of COL22A1, SYT1, and GABRR2 with serum creatinine level

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Serum creatinine (S<sub>CR</sub>) is the most important biomarker for a quick and non-invasive assessment of kidney function in population-based surveys. A substantial proportion of the inter-individual variability in S<sub>CR </sub>level is explicable by genetic factors.</p> <p>Methods</p> <p>We performed a meta-analysis of genome-wide association studies of S<sub>CR </sub>undertaken in five population isolates ('discovery cohorts'), all of which are part of the European Special Population Network (EUROSPAN) project. Genes showing the strongest evidence for an association with S<sub>CR </sub>(candidate loci) were replicated in two additional population-based samples ('replication cohorts').</p> <p>Results</p> <p>After the discovery meta-analysis, 29 loci were selected for replication. Association between S<sub>CR </sub>level and polymorphisms in the collagen type XXII alpha 1 (<it>COL22A1</it>) gene, on chromosome 8, and in the synaptotagmin-1 (<it>SYT1</it>) gene, on chromosome 12, were successfully replicated in the replication cohorts (p value = 1.0 × 10<sup>-6 </sup>and 1.7 × 10<sup>-4</sup>, respectively). Evidence of association was also found for polymorphisms in a locus including the gamma-aminobutyric acid receptor rho-2 (<it>GABRR2</it>) gene and the ubiquitin-conjugating enzyme E2-J1 (<it>UBE2J1</it>) gene (replication p value = 3.6 × 10<sup>-3</sup>). Previously reported findings, associating glomerular filtration rate with SNPs in the uromodulin (<it>UMOD</it>) gene and in the schroom family member 3 (<it>SCHROOM3</it>) gene were also replicated.</p> <p>Conclusions</p> <p>While confirming earlier results, our study provides new insights in the understanding of the genetic basis of serum creatinine regulatory processes. In particular, the association with the genes <it>SYT1 </it>and <it>GABRR2 </it>corroborate previous findings that highlighted a possible role of the neurotransmitters GABA<sub>A </sub>receptors in the regulation of the glomerular basement membrane and a possible interaction between GABA<sub>A</sub>receptors and synaptotagmin-I at the podocyte level.</p

    Integration of genome-wide association studies with biological knowledge identifies six novel genes related to kidney function

    Get PDF
    In conducting genome-wide association studies (GWAS), analytical approaches leveraging biological information may further understanding of the pathophysiology of clinical traits. To discover novel associations with estimated glomerular filtration rate (eGFR), a measure of kidney function, we developed a strategy for integrating prior biological knowledge into the existing GWAS data for eGFR from the CKDGen Consortium. Our strategy focuses on single nucleotide polymorphism (SNPs) in genes that are connected by functional evidence, determined by literature mining and gene ontology (GO) hierarchies, to genes near previously validated eGFR associations. It then requires association thresholds consistent with multiple testing, and finally evaluates novel candidates by independent replication. Among the samples of European ancestry, we identified a genome-wide significant SNP in FBXL20 (P = 5.6 × 10−9) in meta-analysis of all available data, and additional SNPs at the INHBC, LRP2, PLEKHA1, SLC3A2 and SLC7A6 genes meeting multiple-testing corrected significance for replication and overall P-values of 4.5 × 10−4-2.2 × 10−7. Neither the novel PLEKHA1 nor FBXL20 associations, both further supported by association with eGFR among African Americans and with transcript abundance, would have been implicated by eGFR candidate gene approaches. LRP2, encoding the megalin receptor, was identified through connection with the previously known eGFR gene DAB2 and extends understanding of the megalin system in kidney function. These findings highlight integration of existing genome-wide association data with independent biological knowledge to uncover novel candidate eGFR associations, including candidates lacking known connections to kidney-specific pathways. The strategy may also be applicable to other clinical phenotypes, although more testing will be needed to assess its potential for discovery in genera

    Genome-wide association and functional follow-up reveals new loci for kidney function

    Get PDF
    Chronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR), the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure.

    Get PDF
    Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 × 10(-8) to P = 2.3 × 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP
    corecore