42 research outputs found

    Room-temperature ferromagnetism in graphite driven by 2D networks of point defects

    Full text link
    Ferromagnetism in carbon-based materials is appealing for both applications and fundamental science purposes because carbon is a light and bio-compatible material that contains only s and p electrons in contrast to traditional ferromagnets based on 3d or 4f electrons. Here we demonstrate direct evidence for ferromagnetic order locally at defect structures in highly oriented pyrolytic graphite (HOPG) with magnetic force microscopy and in bulk magnetization measurements at room temperature. Magnetic impurities have been excluded as the origin of the magnetic signal after careful analysis supporting an intrinsic magnetic behavior of carbon. The observed ferromagnetism has been attributed to originate from unpaired electron spins localized at grain boundaries of HOPG. Grain boundaries form two-dimensional arrays of point defects, where their spacing depends on the mutual orientation of two grains. Depending on the distance between these point defects, scanning tunneling spectroscopy of grain boundaries showed two intense split localized states for small distances between defects (< 4 nm) and one localized state at the Fermi level for large distances between defects (> 4 nm).Comment: 19 pages, 5 figure

    Cones, pringles, and grain boundary landscapes in graphene topology

    Full text link
    A polycrystalline graphene consists of perfect domains tilted at angle {\alpha} to each other and separated by the grain boundaries (GB). These nearly one-dimensional regions consist in turn of elementary topological defects, 5-pentagons and 7-heptagons, often paired up into 5-7 dislocations. Energy G({\alpha}) of GB computed for all range 0<={\alpha}<=Pi/3, shows a slightly asymmetric behavior, reaching ~5 eV/nm in the middle, where the 5's and 7's qualitatively reorganize in transition from nearly armchair to zigzag interfaces. Analysis shows that 2-dimensional nature permits the off-plane relaxation, unavailable in 3-dimensional materials, qualitatively reducing the energy of defects on one hand while forming stable 3D-landsapes on the other. Interestingly, while the GB display small off-plane elevation, the random distributions of 5's and 7's create roughness which scales inversely with defect concentration, h ~ n^(-1/2)Comment: 9 pages, 4 figure

    Electronic states of disordered grain boundaries in graphene prepared by chemical vapor deposition

    Get PDF
    Perturbations of the two dimensional carbon lattice of graphene, such as grain boundaries, have significant influence on the charge transport and mechanical properties of this material. Scanning tunneling microscopy measurements presented here show that localized states near the Dirac point dominate the local density of states of grain boundaries in graphene grown by chemical vapor deposition. Such low energy states are not reproduced by theoretical models which treat the grain boundaries as periodic dislocation-cores composed of pentagonal-heptagonal carbon rings. Using ab initio calculations, we have extended this model to include disorder, by introducing vacancies into a grain boundary consisting of periodic dislocation-cores. Within the framework of this model we were able to reproduce the measured density of states features. We present evidence that grain boundaries in graphene grown on copper incorporate a significant amount of disorder in the form of two-coordinated carbon atoms. © 2013 Elsevier Ltd. All rights reserved

    Grain Boundaries in Graphene on SiC(0001ˉ\bar{1}) Substrate

    Full text link
    Grain boundaries in epitaxial graphene on the SiC(0001ˉ\bar{1}) substrate are studied using scanning tunneling microscopy and spectroscopy. All investigated small-angle grain boundaries show pronounced out-of-plane buckling induced by the strain fields of constituent dislocations. The ensemble of observations allows to determine the critical misorientation angle of buckling transition θc=19± 2\theta_c = 19 \pm~2^\circ. Periodic structures are found among the flat large-angle grain boundaries. In particular, the observed θ=33±2\theta = 33\pm2^\circ highly ordered grain boundary is assigned to the previously proposed lowest formation energy structural motif composed of a continuous chain of edge-sharing alternating pentagons and heptagons. This periodic grain boundary defect is predicted to exhibit strong valley filtering of charge carriers thus promising the practical realization of all-electric valleytronic devices

    Ferromagnetism in graphene nanoribbons: split versus oxidative unzipped ribbons

    Full text link
    Two types of graphene nanoribbons: (a) potassium-split graphene nanoribbons (GNRs), and (b) oxidative unzipped and chemically converted graphene nanoribbons (CCGNRs) were investigated for their magnetic properties using the combination of static magnetization and electron spin resonance measurements. The two types of ribbons possess remarkably different magnetic properties. While the low temperature ferromagnet-like feature is observed in both types of ribbons, such room temperature feature persists only in potassium-split ribbons. The GNRs show negative exchange bias, but the CCGNRs exhibit a 'positive exchange bias'. Electron spin resonance measurements infer that the carbon related defects may responsible for the observed magnetic behaviour in both types of ribbons. Furthermore, proton hyperfine coupling strength has been obtained from hyperfine sublevel correlation experiments performed on the GNRs. Electron spin resonance provides no indications for the presence of potassium (cluster) related signals, emphasizing the intrinsic magnetic nature of the ribbons. Our combined experimental results may infer the coexistence of ferromagnetic clusters with anti-ferromagnetic regions leading to disordered magnetic phase. We discuss the origin of the observed contrast in the magnetic behaviours of these two types of ribbons

    Inhibition of Melanogenesis by the Pyridinyl Imidazole Class of Compounds: Possible Involvement of the Wnt/β-Catenin Signaling Pathway

    Get PDF
    While investigating the role of p38 MAPK in regulating melanogenesis, we found that pyridinyl imidazole inhibitors class compounds as well as the analog compound SB202474, which does not inhibit p38 MAPK, suppressed both α-MSH-induced melanogenesis and spontaneous melanin synthesis. In this study, we demonstrated that the inhibitory activity of the pyridinyl imidazoles correlates with inhibition of the canonical Wnt/β-catenin pathway activity. Imidazole-treated cells showed a reduction in the level of Tcf/Lef target genes involved in the β-catenin signaling network, including ubiquitous genes such as Axin2, Lef1, and Wisp1 as well as cell lineage-restricted genes such as microphthalmia-associated transcription factor and dopachrome tautomerase. Although over-expression of the Wnt signaling pathway effector β-catenin slightly restored the melanogenic program, the lack of complete reversion suggested that the imidazoles interfered with β-catenin-dependent transcriptional activity rather than with β-catenin expression. Accordingly, we did not observe any significant change in β-catenin protein expression. The independence of p38 MAPK activity from the repression of Wnt/β-catenin signaling pathway was confirmed by small interfering RNA knockdown of p38 MAPK expression, which by contrast, stimulated β-catenin-driven gene expression. Our data demonstrate that the small molecule pyridinyl imidazoles possess two distinct and opposite mechanisms that modulate β-catenin dependent transcription: a p38 inhibition-dependent effect that stimulates the Wnt pathway by increasing β-catenin protein expression and an off-target mechanism that inhibits the pathway by repressing β-catenin protein functionality. The p38-independent effect seems to be dominant and, at least in B16-F0 cells, results in a strong block of the Wnt/β-catenin signaling pathway

    sp-Electron Magnetic Clusters with a Large Spin in Graphene

    Get PDF
    Motivated by recent experimental data (Sepioni, M. et al. Phys. Rev. Lett. 2010, 105, 207205), we have studied the possibility of forming magnetic clusters with spin S> 1/2 on graphene by adsorption of hydrogen atoms or hydroxyl groups. Migration of hydrogen atoms and hydroxyl groups on the surface of graphene during the delamination of HOPG led to the formation of seven-atom or seven-OH-group clusters with S=5/2 that were of a special interest. The coincidence of symmetry of the clusters with the graphene lattice strengthens the stability of the cluster. For (OH)7 clusters that were situated greater than 3 nm from one another, the reconstruction barrier to a nonmagnetic configuration was approximately 0.4 eV, whereas for H7 clusters, there was no barrier and the high-spin state was unstable. Stability of the high-spin clusters increased if they were formed on top of ripples. Exchange interactions between the clusters were studied and we have shown that the ferromagnetic state is improbable. The role of the chemical composition of the solvent used for the delamination of graphite is discussed.Comment: 22 pages, 1 table, 4 figures. Minor changes, few refs added. Accepted to ACS Nan

    Mapping cortical brain asymmetry in 17,141 healthy individuals worldwide via the ENIGMA Consortium.

    Get PDF
    Hemispheric asymmetry is a cardinal feature of human brain organization. Altered brain asymmetry has also been linked to some cognitive and neuropsychiatric disorders. Here, the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Consortium presents the largest-ever analysis of cerebral cortical asymmetry and its variability across individuals. Cortical thickness and surface area were assessed in MRI scans of 17,141 healthy individuals from 99 datasets worldwide. Results revealed widespread asymmetries at both hemispheric and regional levels, with a generally thicker cortex but smaller surface area in the left hemisphere relative to the right. Regionally, asymmetries of cortical thickness and/or surface area were found in the inferior frontal gyrus, transverse temporal gyrus, parahippocampal gyrus, and entorhinal cortex. These regions are involved in lateralized functions, including language and visuospatial processing. In addition to population-level asymmetries, variability in brain asymmetry was related to sex, age, and intracranial volume. Interestingly, we did not find significant associations between asymmetries and handedness. Finally, with two independent pedigree datasets (n = 1,443 and 1,113, respectively), we found several asymmetries showing significant, replicable heritability. The structural asymmetries identified and their variabilities and heritability provide a reference resource for future studies on the genetic basis of brain asymmetry and altered laterality in cognitive, neurological, and psychiatric disorders
    corecore