1,727 research outputs found

    Ursinus College Alumni Journal, November 1963

    Get PDF
    The President writes • A kaleidoscopic view of the student • The student looks at himself • The faculty comments • Modern German literature • Founders\u27 Day • Spangler portrait unveiled • Dr. Helfferich\u27s remarks • Board elects two members • Campaign receipts total $223,416 • Eshbach resigns • Loyalty Fund vis-a-vis capital funds campaign • Wills • Ursinus: 1963-64 • Staiger\u27s latest publication • Mr. and Mrs. Ursinus visit U.C. • Rothenberger honored • Howard listed • Ursinus entertains neighbors • Travel seminar • Student teachers rank high • They carry big sticks • 1963-64 winter sports schedules • Homecoming • Football • Hockey all-stars • G. Sieber Pancoast, \u2737 • Class notes • Weddings • Births • Necrologyhttps://digitalcommons.ursinus.edu/alumnijournal/1078/thumbnail.jp

    Susceptible periods during embryogenesis of the heart and endocrine glands.

    Get PDF
    One of the original principles of teratology states that, "Susceptibility to teratogenesis varies with the developmental stage at the time of exposure to an adverse influence" [Wilson JG. Environment and Birth Defects. New York:Academic Press, 1973]. The time of greatest sensitivity encompasses the period of organ formation during weeks 3-8 following fertilization in human gestation. At this time, stem cell populations for each organ's morphogenesis are established and inductive events for the initiation of differentiation occur. Structural defects of the heart and endocrine system are no exception to this axiom and have their origins during this time frame. Although the function and maturation of these organs may be affected at later stages, structural defects and loss of cell types usually occur during these early phases of development. Thus, to determine critical windows for studying mechanisms of teratogenesis, it is essential to understand the developmental processes that establish these organs

    The Ursinus Weekly, February 28, 1974

    Get PDF
    Dean of men’s office ransacked, washing machines destroyed as vandalism continues: USGA proposes community action to eliminate problem • Sorority bids signed; sophomore girls join three campus groups • Christian fellowship will present musical program • First concert scheduled for Helfferich Hall • St. Andrew’s Society announces deadline for scholarships • Editorials: Festival of the Arts; On vandalism • Alumni corner: Leidy lacks leisure • Forum review: Yass Hakoshima • Drama review: “This is the Rill speaking” and “The Interview” • I.F. Winter Party scheduled March 8 • Woodstock abdication • Bearettes come back! • It was a very good year! • First gymnastics meet takes placehttps://digitalcommons.ursinus.edu/weekly/1011/thumbnail.jp

    Genes in the postgenomic era

    Get PDF
    We outline three very different concepts of the gene - 'instrumental', 'nominal', and 'postgenomic'. The instrumental gene has a critical role in the construction and interpretation of experiments in which the relationship between genotype and phenotype is explored via hybridization between organisms or directly between nucleic acid molecules. It also plays an important theoretical role in the foundations of disciplines such as quantitative genetics and population genetics. The nominal gene is a critical practical tool, allowing stable communication between bioscientists in a wide range of fields grounded in well-defined sequences of nucleotides, but this concept does not embody major theoretical insights into genome structure or function. The post-genomic gene embodies the continuing project of understanding how genome structure supports genome function, but with a deflationary picture of the gene as a structural unit. This final concept of the gene poses a significant challenge to conventional assumptions about the relationship between genome structure and function, and between genotype and phenotype

    Mid-Infrared Properties of the Swift Burst Alert Telescope Active Galactic Nuclei Sample of the Local Universe. I. Emission-Line Diagnostics

    Get PDF
    We compare mid-infrared emission-line properties, from high-resolution Spitzer spectra of a hard X-ray (14 -- 195 keV) selected sample of nearby (z < 0.05) AGN detected by the Burst Alert Telescope (BAT) aboard Swift. The luminosity distribution for the mid-infrared emission-lines, [O IV] 25.89 micron, [Ne II] 12.81 micron, [Ne III] 15.56 micron and [Ne V] 14.32/24.32 micron, and hard X-ray continuum show no differences between Seyfert 1 and Seyfert 2 populations, however six newly discovered BAT AGNs are under-luminous in [O IV], most likely the result of dust extinction in the host galaxy. The overall tightness of the mid-infrared correlations and BAT fluxes and luminosities suggests that the emission lines primarily arise in gas ionized by the AGN. We also compare the mid-infrared emission-lines in the BAT AGNs with those from published studies of ULIRGs, PG QSOs, star-forming galaxies and LINERs. We find that the BAT AGN sample fall into a distinctive region when comparing the [Ne III]/[Ne II] and the [O IV]/[Ne III] ratios. These line ratios are lower in sources that have been previously classified in the mid-infrared/optical as AGN than those found for the BAT AGN, suggesting that, in our X-ray selected sample, the AGN represents the main contribution to the observed line emission. These ratios represent a new emission line diagnostic for distinguishing between AGN and star forming galaxies.Comment: 54 pages, 9 Figures. Accepted for publication in The Astrophysical Journal

    Ursinus College Alumni Journal, August 1963

    Get PDF
    The President writes • The uses and limitations of words • Commencement 1963 • 3,032 pledge 509,081;2,809contribute509,081; 2,809 contribute 192,568 • Loyalty Fund committee reorganized • Joseph J. Lynch, college steward • A description of the new dining hall • Chemistry changes • NSF grants for bio profs • Teaching awards • Pilot project: Physics chemistry mathematics • The not-so-ugly American • Best track season in Ursinus history • Double your dollars • Things are looking up • Preliminary thoughts on wills • Reading, writing, and Mazurkiewicz • The augmented Roman alphabet • Edwin C. Myers, \u2764 and Frederic W. Yocum, Jr. \u2764 • Eugene J. Bradford, \u2736 • Robert A. Petersen, \u2760 • Sue Harman, \u2765 • Results of the 1963 Loyalty Fund campaign • The leaders • Contributors to the 1963 Loyalty Fund • Ursinus alumni at Methacton High School • Class notes • Weddings • Births • Necrology • Our role as alumnihttps://digitalcommons.ursinus.edu/alumnijournal/1077/thumbnail.jp

    Tidal propagation in strongly convergent channels

    Get PDF
    Simple first‐ and second‐order analytic solutions, which diverge markedly from classical views of cooscillating tides, are derived for tidal propagation in strongly convergent channels. Theoretical predictions compare well with observations from typical examples of shallow, “funnel‐shaped” tidal estuaries. A scaling of the governing equations appropriate to these channels indicates that at first order, gradients in cross‐sectional area dominate velocity gradients in the continuity equation and the friction term dominates acceleration in the momentum equation. Finite amplitude effects, velocity gradients due to wave propagation, and local acceleration enter the equations at second order. Applying this scaling, the first‐order governing equation becomes a first‐order wave equation, which is inconsistent with the presence of a reflected wave. The solution is of constant amplitude and has a phase speed near the frictionless wave speed, like a classical progressive wave, yet velocity leads elevation by 90°, like a classical standing wave. The second‐order solution at the dominant frequency is also a unidirectional wave; however, its amplitude is exponentially modulated. If inertia is finite and convergence is strong, amplitude increases along channel, whereas if inertia is weak and convergence is limited, amplitude decays. Compact solutions for second‐order tidal harmonics quantify the partially canceling effects of (1) time variations in channel depth, which slow the propagation of low water, and (2) time variations in channel width, which slow the propagation of high water. Finally, it is suggested that phase speed, along‐channel amplitude growth, and tidal harmonics in strongly convergent channels are all linked by morphodynamic feedback

    The Suppressor of AAC2 Lethality SAL1 Modulates Sensitivity of Heterologously Expressed Artemia ADP/ATP Carrier to Bongkrekate in Yeast

    Get PDF
    The ADP/ATP carrier protein (AAC) expressed in Artemia franciscana is refractory to bongkrekate. We generated two strains of Saccharomyces cerevisiae where AAC1 and AAC3 were inactivated and the AAC2 isoform was replaced with Artemia AAC containing a hemagglutinin tag (ArAAC-HA). In one of the strains the suppressor of ΔAAC2 lethality, SAL1, was also inactivated but a plasmid coding for yeast AAC2 was included, because the ArAACΔsal1Δ strain was lethal. In both strains ArAAC-HA was expressed and correctly localized to the mitochondria. Peptide sequencing of ArAAC expressed in Artemia and that expressed in the modified yeasts revealed identical amino acid sequences. The isolated mitochondria from both modified strains developed 85% of the membrane potential attained by mitochondria of control strains, and addition of ADP yielded bongkrekate-sensitive depolarizations implying acquired sensitivity of ArAAC-mediated adenine nucleotide exchange to this poison, independent from SAL1. However, growth of ArAAC-expressing yeasts in glycerol-containing media was arrested by bongkrekate only in the presence of SAL1. We conclude that the mitochondrial environment of yeasts relying on respiratory growth conferred sensitivity of ArAAC to bongkrekate in a SAL1-dependent manner. © 2013 Wysocka-Kapcinska et al

    Using [C II] 158 μm Emission from Isolated ISM Phases as a Star Formation Rate Indicator

    Get PDF
    The brightest observed emission line in many star-forming galaxies is the [C II] 158 μm line, making it detectable up to z ~ 7. In order to better understand and quantify the [C II] emission as a tracer of star formation, the theoretical ratio between the [N II] 205 μm emission and the [C II] 158 μm emission has been employed to empirically determine the fraction of [C II] emission that originates from the ionized and neutral phases of the interstellar medium (ISM). Sub-kiloparsec measurements of the [C II] 158 μm and [N II] 205 μm lines in nearby galaxies have recently become available as part of the Key Insights in Nearby Galaxies: a Far Infrared Survey with Herschel (KINGFISH) and Beyond the Peak programs. With the information from these two far-infrared lines along with the multi-wavelength suite of KINGFISH data, a calibration of the [C II] emission line as a star formation rate (SFR) indicator and a better understanding of the [C II] deficit are pursued. [C II] emission is also compared to polycyclic aromatic hydrocarbon (PAH) emission in these regions to compare photoelectric heating from PAH molecules to cooling by [C II] in the neutral and ionized phases of the ISM. We find that the [C II] emission originating in the neutral phase of the ISM does not exhibit a deficit with respect to the infrared luminosity and is therefore preferred over the [C II] emission originating in the ionized phase of the ISM as an SFR indicator for the normal star-forming galaxies included in this sample
    corecore