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ABSTRACT 

 

The ADP/ATP carrier protein (AAC) expressed in Artemia franciscana is refractory to bongkrekate. We 

generated two strains of Saccharomyces cerevisiae where AAC1 and AAC3 were inactivated and the 

AAC2 isoform was replaced with Artemia AAC containing a hemagglutinin tag (ArAAC-HA). In one of 

the strains the suppressor of AAC2 lethality, SAL1, was also inactivated but a plasmid coding for yeast 

AAC2 was included, because the ArAAC sal1 strain was lethal. In both strains ArAAC-HA was 

expressed and correctly localized to the mitochondria. Peptide sequencing of ArAAC expressed in 

Artemia and that expressed in the modified yeasts revealed identical amino acid sequences. The isolated 

mitochondria from both modified strains developed 85% of the membrane potential attained by 

mitochondria of control strains, and addition of ADP yielded bongkrekate-sensitive depolarizations 

implying acquired sensitivity of ArAAC-mediated adenine nucleotide exchange to this poison, 

independent from SAL1. However, growth of ArAAC-expressing yeasts in glycerol-containing media was 

arrested by bongkrekate only in the presence of SAL1. We conclude that the mitochondrial environment 

of yeasts relying on respiratory growth conferred sensitivity of ArAAC to bongkrekate in a SAL1-

dependent manner.  
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INTRODUCTION 

 

Embryos of the
 
brine shrimp Artemia franciscana exhibit a type of extremophilia characterized by 

tolerance of anoxia at room temperature for several years [1] [2] with no evidence of apoptotic or necrotic 

cell death [3].  Protracted anoxia in mammalian species opens the
 
so-called mitochondrial permeability 

transition pore (PTP) [4],  [5], [6]. This pore is of a sufficient size (cut-off ~1,5 kDa) to allow passage of 

solutes and water, causing swelling and ultimately rupture of the organelle. Activation of the PTP by Ca
2+

 

overload with the ensuing loss of mitochondrial function results in a severely diminished capacity for 

energy production and is a final common pathway of cell death [7].  
Mitochondria isolated from the embryos of Artemia franciscana lack a Ca

2+
-induced PTP [8], despite the 

capacity for a profound storage for calcium. While the salient components of the PTP have just been 

unravelled [9], [10] but see [11] the adenine nucleotide carrier (AAC) remains a well-established 

modulatory component of this pore [12], [13]. All known ligands of the AAC modulate the probability for 

PTP opening [12]. Relevant to this, Artemia franciscana is the only species known in which adenine 

nucleotide exchange operated by AAC is refractory to the naturally occurring inhibitor, bongkrekic acid 

(BKA) [14]. In species where Ca
2+

-induced mitochondrial PTP can be demonstrated, BKA inhibits 

adenine nucleotide exchange mediated by the AAC isoforms they express, and decreases the probability 

of PTP opening [15], [16], [17], [12]. Recently however, we have reported that mitochondria obtained 

from brown shrimp (Crangon crangon) and common prawn (Palaemon serratus) exhibit BKA-sensitive 

mitochondrial adenine nucleotide transport while lacking a Ca
2+

-induced permeability transition [18]. 
A plausible hypothesis is that AAC interacts with a yet to be identified protein that initiates PTP opening, 

and that this protein interaction is affected by BKA. An obvious impediment in the elucidation of the role 

of AAC in PTP and its inhibition by BKA is the lack of knowledge regarding the binding site of BKA on 

AAC [12], [19]. In the AAC protein sequence found in Artemia, the region between residues 198 and 225 

exhibits a low degree of similarity with AAC sequences from other species [14]. We therefore postulated 

that the BKA binding site may reside somewhere within this Artemia AAC region. To verify this 

hypothesis, a base-by-base alteration is warranted to pinpoint residues that are critical for the binding of 

BKA. Insufficient information regarding the genetic background of Artemia franciscana prompted us to 

express Artemia AAC (ArAAC) in a heterologous environment amenable to genetic manipulations. Yeast 

is an excellent platform for such experiments. However, as it will become evident from the 'Results' 

section below, adenine nucleotide exchange mediated by heterologously expressed ArAAC expressed in 

Saccharomyces cerevisiae was sensitive to BKA. In addition, due to substitution of endogenous yeast 

AAC2 carriers which are also important for cell respiration and viability with ArAAC, it was necessary to 

manipulate the presence of the suppressor of AAC2 lethality, SAL1. SAL1 is required for growth of yeasts 

when AAC2 is absent or inhibited by BKA [20]. Contrary to our expectation, the viability of yeasts 

expressing ArAAC under non-fermenting conditions was arrested by BKA only when SAL1 was 

coexpressed while in the absence of Sal1p, growth of yeasts expressing ArAAC was BKA resistant. In 

direct contrast, under fermenting conditions the viability of yeasts expressing ArAAC was arrested by 

BKA only when SAL1 was absent, indicating the lethality of ArAAC sal1∆. 

 

RESULTS 

 

Expression of ArAAC in yeast cells 

We integrated the ArAAC gene into the locus of the main yeast AAC gene – AAC2 (Figure 1). As the 

double aac2 sal1 deletion strain is lethal and a functional Sal1p is required for growth of yeast in the 

presence of BKA which blocks the operation of AAC2 protein [20], the ArAAC was expressed in SAL1 

and sal1::NatMX4 deletion background. We first amplified ArAAC using cDNA from reverse transcribed 

total Artemia franciscana RNA as template and cloned it into a TOPO-TA Cloning Vector (TOPO TA 

Cloning® Kits for Sequencing, Invitrogen). The ArAAC integration cassette containing the ArAAC-HA 

tagged gene and the hygromycin resistance gene HphNTI was constructed as described in 'Materials and 

Methods'. The cassette DNA was transformed into a strain bearing deletions of two other AAC genes 
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present in yeast, AAC1 and AAC3 (RKY67-1C), resulting in MWY79/15 and MWY79/17 clones bearing 

ArAAC-HA gene in the locus of AAC2 (Table I). We then deleted the SAL1 gene in control and ArAAC 

expressing strains MR6, RKY67-1C and MWY79/15 by transforming them with sal1::NatMX4 cassette 

(see under 'Materials and Methods'), resulting in strains: MWY85/9, MWY84/3, MWY83/1 and 5 (Table 

I). ArAAC could not rescue yeasts in sal1  background, thus the deletion of SAL1 gene in ArAAC 

background was done in the presence of a wild type copy of yeast AAC2 on a Yep352 plasmid (MWY83 

strains). A most appropriate isogenic control for our ArAAC-expressing constructs would be to 

reintroduce the AAC2 gene in the same manner, with the HA tag and the resistance gene cassette in the 

same positions, as performed in [21] and [22]. However, proteomic analysis of yeast mitochondria 

expressing ArAAC verified that the sequence is identical to that expressed in Artemia franciscana (see 

Figure 5). Moreover, mitochondria from the MWY79/15 strain, where no endogenous AAC was present, 

achieved 85% of total attainable membrane potential, and ADP-ATP exchange was readily demonstrated 

(see Figure 4). These results afford a reasonable degree of assurance that the genetic manipulations in our 

strains did not confer confounding variables to the results. 
However, the fact that proteomic analysis of yeast mitochondria expressing ArAAC verified that the 

sequence is intact and identical to that expressed in Artemia franciscana (see Figure 5), combined with 

the findings that mitochondria from the strain MWY79/15 where no endogenous AAC is present achieved 

85% of total attainable membrane potential, and ADP-ATP exchange could be demonstrated (see Figure 

4), affords a reasonable degree of assurance that the genetic manipulations in our strains did not confer 

confounding variables. 

The proper localization of ArAAC protein in mitochondria was verified by yeast cell extract fractionation, 

Western blotting and estimations of citrate synthase activity in the various fractions (Figure 2). Although 

there is an extramitochondrial citrate synthase in yeasts [23], the overall activity is mainly due to that 

residing in the mitochondrial matrix. During preparation of the mitochondria, fractions from the two 

strains expressing ArAAC with (MWY79/15) and without (MWY83/1) Sal1pSAL1 were probed for the 

presence of ArAAC (through its HA tag) and porin by Western blotting and citrate synthase activity. 

Furthermore, mitoplasts were also generated from mitochondria and these were also probed for the 

presence of ArAAC (through its HA tag) and porin by Western blotting and citrate synthase activity. The 

fractions were: T (total yeast homogenates), S (supernatant), M (mitochondria), and MP (mitoplasts). The 

probing for ArAAC (through its HA tag) and porin was performed in the same blot, thus the bands appear 

very close to each other due to the similar molecular weights of ArAAC and porin. As shown in Figure 2, 

the band representing ArAAC in the Western blot and the corresponding citrate synthase activity in the 

MP fraction is greater than the M fraction, but at the same time the band corresponding to porin in the M 

fraction is greater than the signal from the MP fraction. This is consistent with the notion that porin 

resides in the outer mitochondrial membrane, which is partially removed during the preparation of the MP 

fraction, while ArAAC is in the inner membrane/matrix side. Thus, ArAAC protein was expressed and 

targeted into the yeast inner membrane/matrix side. The experiments shown subsequently in Figure 4 

(especially for the strain MWY79/15 where no endogenous AAC is present) argue that there was indeed 

ADP-ATP exchange, and validate the claim that ArAAC was correctly targeted to the inner mitochondrial 

membrane. 

 

Effect of BKA on viability of the modified strains 

AAC2 is responsible not only for yeast growth in non-fermentable sources, termed the respiratory function 

(R function), but also possesses an essential role in maintaining cell mitotic viability on fermentable 

carbon sources, termed the V function [24]. Mindful that a functional Sal1pSAL1 is required for growth of 

yeasts when Aac2pAAC2 is absent or inhibited by BKA [20], we addressed the function of 

ArAACArtemia AAC and its response to BKA by performing growth analysis on fermentable (glucose) 

and non-fermentable (glycerol) carbon sources in the presence or absence of BKA. BKA enters intact 

yeast cells at pH 4, thus the growth was tested at this pH [20]. Two different clones harboring the same 

genetic manipulations were used in order to gain additional reinforcement that the observed results were 

genuine, and not confounded by the genetic background: therefore, experiments shown in lanes 4/5, 6/7, 
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and 9/10 harbor the same genetic manipulations but were performed in different yeast strains (top table 

within Figure 3). As shown in Figure 3, yeast cells expressing AAC2 required a functional SAL1 gene for 

surviving on glucose-containing media (V function) in the presence of BKA (compare lanes 4 and 5 with 

lane 8 of panels B and C). The strains expressing ArAAC in lieu of AAC2 also required a functional SAL1 

gene for surviving on glucose-containing media in the presence of BKA, indicating that ArAAC together 

with the sal1::NatMX4 deletion is lethal (compare lanes 6 and 7 with lanes 9 and 10 in panels B and C). 

We confirmed this phenotype by testing the ability of MWY83 strains to grow on 5-Fluoroorotic Acid (5-

FOA) plates. 5-FOA is converted to a toxic form (i.e., 5-flurouracil) in strains expressing the functional 

URA3 gene coding for orotine-5-monophosphate decarboxylase that is involved in the synthesis of uracil. 

Yeast strains that are phenotypically Ura+ become Ura- and 5-FOA(R) (resistant) after selection. We 

considered that the URA3 plasmid-born copy of AAC2 gene in the presence of 5-FOA in the medium 

could be lost. However, the MWY83 strains were not able to grow on this medium, confirming the 

ArAAC sal1::NatMX4 lethality (data not shown). Regarding yeast viability in glycerol media where cells 

rely on oxidative phosphorylation (R function) in relation to SAL1, ArAAC complemented the R function 

of yeast AAC2. This can be seen in panels D and E when comparing the triple deletion lane 1 (where no 

AAC isoform was expressed and despite the presence of Sal1p no yeast growth was observed), and lanes 4 

and 5 (where both AAC2 and SAL1 were expressed), to lanes 6 and 7 (where ArAAC was expressed in lieu 

of AAC2). It is noted though, that yeast expressing ArAAC exhibited slower respiratory growth than those 

expressing AAC2 (compare the growth of strains in lanes 1, 4 and 5 with lanes 6 and 7 on glycerol 

medium of panels D and E in Figure 3). In the presence of Sal1p, ArAAC expressed instead of AAC2 

conferred sensitivity to BKA; this is reflected in lanes 6 and 7 of panel F, whereas in the absence of 

Sal1p, it conferred resistance to BKA, inferred from the growth of cells shown in lanes 9 and 10 of panel 

F where ArAAC and AAC2 (from the plasmid) were expressed. Taking into Because sal1  yeasts 

expressing ArAAC can grow in the presence of BKA in glycerol but not glucose media, we concluded 

that ArAAC could not complement the viability (V) function of yeast Aac2p.consideration the BKA 

resistance of ArAAC in sal1 deletion background manifested in glycerol media, and the inability of this 

strain to grow on glucose medium supplemented with BKA, we consider that ArAAC did not 

complement the V function of yeast Aac2p. 

 

Adenine nucleotide exchange mediated by yeast-expressed ArAAC is sensitive to BKA 

To test the effect of BKA on ADP/ATP exchange by ArAAC expressed in yeasts, we relied on the 

electrogenic property of the carrier during adenine nucleotide exchange. Mitochondria isolated from the 

yeast strains detailed below were energized by ethanol, and the effect of BKA during ADP-induced 

depolarization was evaluated by recording membrane potential ( m) with rhodamine 123. To calibrate 

the rhodamine fluorescence signal, at the end of all experiments the uncoupler SF 6847 (SF, 1 M) was 

added to induce complete depolarization. The yeast strains used for these experiments are shown in the 

table on the top of Figure 4. As shown, they either express AAC2 plus SAL1 (RKY67-1C), or ArAAC plus 

SAL1 (MWY79/15) or only AAC2 (MWY84/4) or ArAAC plus AAC2 from a plasmid (MWY83/5). 

Because BKA needs to be protonated in order to exert its action on the carrier [25], [26], it becomes less 

effective at increasing pH. We therefore tested the effect of BKA versus its vehicle (NH4OH) in the pH 

range of 7.1- 7.4. Isolated mitochondria (1 mg) were added in a buffer the composition detailed in 

'Materials and Methods' with a pH indicated in the panels of Figure 4, in the presence of rhodamine 123 

(0.5 M). Ethanol (20 l of 96%) was immediately added in order to energize mitochondria, and this was 

reflected by a decrease in rhodamine fluorescence. In ArAAC-expressing cells (green or magenta traces) 

there was a  mitochondria were less polarized by 15 % decrease in mitochondrial polarization as 

compared to other strains (black or grey traces). After 50 sec, 2 mM ADP was added as indicated in 

Figure 4, resulting in an immediate depolarization due to the electrogenic exchange of ATP
4-

 for ADP
3-

 

through the adenine nucleotide carrier. As soon as a new plateau of m was established, BKA (1 M) 

or NH4OH (1 mM) was added as indicated in Figure 4. In accordance with the results reported previously 

[14], NH4OH exerted a minor depolarizing effect. It is also apparent from all panels that mitochondria 
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obtained from all strains exhibited BKA-induced repolarizations. As expected, the extent of BKA-induced 

repolarization was dependent on pH, but even at a condition at pH 7.4 where BKA had only a minimal 

effect on Aac2p-mediated adenine nucleotide exchange (black trace bottom right), it potently abolished 

ADP-induced depolarization in ArAAC-expressing mitochondria (same panel, green trace). Since BKA 

induced repolarization in mitochondria obtained from all strains, we concluded that the ArAAC expressed 

in yeasts became sensitive to BKA. Moreover, in contrast to the viability results shown in Figure 3, 

ArAAC was sensitive to BKA in a manner independent of SAL1.   

 

Mass-spectrometry of mitochondria isolated from Artemia franciscana embryos and from yeasts 

expressing ArAAC 

The apparent discrepancy between the above observation showing sensitivity of ArAAC expressed in 

yeasts to inhibition by BKA, while Artemia mitochondria are refractory to this poison [14], prompted us 

to investigate if ArAAC expressed in yeast is indeed identical to that expressed in Artemia. To answer this 

question, we performed mass spectrometric analysis of isolated mitochondria from strain MWY79/15 

expressing the ArAAC, and from isolated mitochondria from embryos of Artemia franciscana, see 

supplemental tables 1-6. Samples were treated as detailed in 'Materials and Methods'. As shown in Figure 

5, we detected 62% sequence coverage of the ArAAC protein expressed in yeast mitochondria, and 70% 

of the ArAAC found in Artemia. Despite the fact that sequence coverage was not 100%, peptide 

fragments of ArAAC expressed in either yeasts or Artemia were detected near the N- and C-termini, 

arguing against a truncated form of ArAAC expressed in yeasts. By comparing the ArAAC expressed in 

yeasts to that expressed in Artemia, it could be concluded that the proteins are identical. The homologues 

of Sal1p, SCaMC-2 (isoform 1) and SCaMC-3 were identified in the mass spectrometric analysis of the 

Artemia mitochondria (see 123456.xls file in the Supplemental Material). However, the searches of the 

spectra obtained by mass spectrometry were made using the mouse MitoCarta database [27]. Ongoing 

efforts are under way to sequence the transcriptome of Artemia franciscana which would be optimal for 

correctly identifying all proteins from the Artemia mitochondria peptide fragments detected by mass 

spectrometry. 

 

DISCUSSION 

 

We investigated the effect of heterologously expressing AAC of Artemia franciscana in Saccharomyces 

cerevisiae. The most important findings of this study are as follows: i) respiratory growth of yeasts 

expressing ArAAC was arrested by BKA only when SAL1 was coexpressed; ii) fermentative growth of 

yeasts expressing ArAAC was arrested by BKA only when SAL1 was absent, and iii) adenine nucleotide 

exchange mediated by ArAAC expressed in yeasts became sensitive to BKA, in a manner independent of 

SAL1. 

In order to explain the sensitivity of adenine nucleotide exchange mediated by ArAAC expressed in 

yeasts to BKA, the challenge of reconciling two findings emerges: the first is that ArAAC expressed in 

Artemia franciscana is refractory to BKA [14], [18] and the second is that BKA binds directly on the 

carrier [28], [29], [reviewed in [12]], making it unlikely that an as yet to be identified protein conferring 

AAC sensitivity to BKA is absent in mitochondria from Artemia franciscana. However, the opposite 

scenario seems possible: that an as yet to be identified protein conferring ArAAC resistance to BKA is 

present in mitochondria from Artemia franciscana. As mentioned in the 'Results' section, ongoing efforts 

are under way to sequence the transcriptome of Artemia franciscana which would allow the identification 

of more proteins from the Artemia mitochondria peptide fragments. After this database is assembled, 

proteins interacting with ArAAC expressed in Artemia mitochondria can be sought.  

The acquired sensitivity of ArAAC expressed in yeast to BKA outlines a limitation in a common strategy 

of heterologously expressing proteins in this organism for the purpose of genetic manipulation; it is 

neither necessary nor expected for a heterologously expressed protein to behave exactly like in its native 

environment. Relevant to this, the lipid environment in which AAC is embedded is a critical component 

for exchange activity in both yeast and mammals [30], [31], [32]. Indeed, a high sensitivity of yeast 
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AAC2 to the cardiolipin content has been previously demonstrated [33], [34]. The lipid 

composition of the inner mitochondrial membrane of Artemia in which AAC is embedded may be very 

different from that in yeasts or any other organism to the extent that affords BKA resistance. 

The ArAAC-SAL1 interaction suggests a departure from what has been established for AAC2-SAL1 

interaction: in yeast cells with no AAC2 expression the presence of SAL1 is required for survival in 

glucose-containing media and vice versa [24]. This is because besides the respiratory function, AAC2 

exhibits an essential role for maintaining cell mitotic viability on fermentable carbon sources; co-

inactivation of SAL1 and AAC2 leads to defects in mitochondrial translation and mitochondrial DNA 

(mtDNA) maintenance [35]. In the results presented above, ArAAC-expressing yeasts in lieu of AAC2 and 

also coexpressing SAL1 failed to exhibit respiratory growth in the presence of BKA; on the other hand, 

coexpression of SAL1 in ArAAC-expressing yeasts in lieu of AAC2 in glucose-containing media rescued 

cell growth from BKA. In the absence of BKA, expression of ArAAC in lieu of AAC2 did not result in 

growth arrest irrespective of SAL1 and independent from growth conditions. These results suggest that 

ArAAC restored the R function but not the V function, originally attributed to AAC2. 

Based on the observations that Sal1pSAL1 allowed yeast growth in the presence of bongkrekic acid on 

respiratory media, while BKA blocked ADP-ATP exchange in isolated mitochondria from the same 

strains, one might propose that Sal1SAL1 prevents BKA from hindering AAC in maintaining growth 

during respiratory conditions in a manner unrelated to adenine nucleotide exchange. This conclusion is at 

odds with earlier reports with yeast mutants exhibiting BKA resistance during respiration [36], in view of 

the presumption that these strains possessed Sal1p in their mitochondria. The reason(s) for this 

discrepancy is unknown; however, the exact role of Sal1p regarding yeast viability has not been 

unequivocally determined and is discussed below.    

Sal1p mediates a Ca
2+

-dependent import of ATP-Mg from the cytosol to the mitochondria under 

conditions where these organelles are ATP consumers [37], [38], thereby maintaining or promoting cell 

survival. The mammalian homologue SCaMC (small calcium-binding mitochondrial carrier protein) also 

operates as a Ca
2+

-dependent ATP-Mg/Pi carrier. It has been shown that SCaMC-1 promotes cancer cell 

survival by desensitizing mitochondrial permeability transition via ATP/ADP-mediated matrix Ca
2+

 

buffering [39]. SCaMC-3 is critical for the increase in oxidative phosphorylation in rodent liver 

mitochondria in response to glucagon and Ca
2+

-mobilizing agents, an effect that that was likely due to 

allowing Ca
2+

-dependent accumulation of mitochondrial adenine nucleotides [40]. Furthermore, although 

it has not been explicitly sought, the presence of SCaMC isoforms in the livers of transgenic mice 

engineered to lack their own adenine nucleotide carriers is probably the reason why these mice did not 

exhibit embryonic lethality [13]. However, the requisite nature of SCaMC in mammalian systems has not 

been attributed to maintenance of matrix adenine nucleotide levels. Likewise, in yeast it has not been 

established if Sal1p complements for Aac2p by means of transporting adenine nucleotides, hence the 

opposing conclusions by the groups of Chen and Kolarov [35], [20]. Nonetheless, yeast as a model system 

enjoys greater versatility because its growth can be examined during fermenting (V function) versus 

respiratory (R function) conditions. With such a comparison, we addressed the contribution of SAL1 and 

AAC2. The availability of our yeast strains expressing ArAAC in lieu of AAC2 and the effects it exhibits in 

relation to SAL1 may help to elucidate the role of SAL1 to cell survival.  

Finally, mindful that mitochondria obtained from Artemia franciscana do not exhibit the Ca
2+

-induced 

PTP [8], it would be desirable to test yeast mitochondria expressing ArAAC for Ca
2+

-induced PTP. 

Unfortunately, Saccharomyces cerevisiae do not express the mitochondrial calcium uniporter [41], 
[42][42], [43], even though they exhibit a channel with characteristics reminiscent of PTP, known as 'yeast 

mitochondrial unselective channel' (YMUC) [44]. 
 

MATERIALS AND METHODS 

 

Strains and genotypes: The S. cerevisiae strains and their genotypes are listed in Table I.  

Construction of yeast strains: To construct AAC1 and AAC3 deletions in MR6 background the 

aac1::KanMX4 and aac3::KanMX4 cassettes were amplified by PCR using as templates total DNA 
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isolated from strains bearing deletions of AAC1 and AAC3 genes from the EUROSCARF collection. MR6 

strain was transformed with the deletion cassettes as described previously [45] and transformants were 

selected on YPGA medium supplemented with 200µg/ml geneticin G418. The correct integration of the 

cassettes was verified by PCR using AAC1Ver, AAC3Ver and KanMX-Up primers, and by phenotypic 

analysis. The RKY67-1C double aac1::KanMX4 aac3::KanMX4 strain was constructed by crossing the 

single deletion strains aac1::KanMX4 and aac3::KanMX4, sporulation of the diploid 

AAC1/aac1::KanMX4 AAC3/aac3::KanMX4 strain followed by tetrad dissection. To integrate ArAAC 

into yeast genome the ArACC gene was first amplified with primers ArAnt F and ArAnt R (all primers 

are listed in Table II) using cDNA from reverse transcribed total Artemia franciscana RNA as template 

and cloned into TOPO-TA Cloning Vector. The ArACC cassette for integration into yeast DNA was 

constructed by multiple PCR reactions; all cloning steps were verified by sequencing [46]. The cassette 

included ArACC-HA and HphNTI genes flanked by yeast ACC2 gene promoter and terminator sequences, 

see Figure 1. The HA, HphNTI, AAC2 gene promoter and terminator sequences were amplified separately 

using pYM16 or total DNA from yeast as templates, respectively. Before the HphNTI gene the sequences 

of ADH terminator and TEF promoter are present [46]. The AAC2 gene promoter was then fused to HA by 

one PCR reaction (product A), HA was fused to ADH terminator and HphNTI gene by a second PCR 

reaction (product B) and HA and HphNTI gene were fused to AAC2 gene terminator in a third PCR 

reaction (product C). The final PCR product was assembled using products A, B and C as templates and 

cloned into pGEM T-easy vector resulting in plasmid pMW77/11. The EcoRV restriction site was 

engineered before the HA tag sequence. The ArACC gene was amplified from the pCR 2.1-TOPO vector 

(Invitrogen) using primers 9upANT and 10upANT, introducing EcoRV restriction sites. The 915-bp 

product digested by EcoRV was cloned into EcoRV site of pMW77/11 resulting in pMW83 plasmid. The 

integration cassette was cut off from pMW83 by XbaI enzyme and used to transform RKY67-1C strain. 

Transformants were selected on YPGA medium supplemented with 300µg/ml hygromycin B. 

Homologous integration of ArACC in MWY79/15 strain was verified by PCR using primers AAC2veri 

and AAC2lov and by phenotypic analysis. To construct sal1::NatMX4 deletion, the SAL1 coding 

sequence and its promoter and terminator region (-193 bp upstream and 226 bp downstream) was PCR-

amplified using primers Sal1-Up and Sal1-Low. The PCR product was cloned into pJet vector resulting in 

pMW100/6 plasmid. The construct sal1 ::NatMX4 gene and the PvuII/EcoRV fragment from plasmid 

pAG25 [47] including NatMX4 drug resistance gene was cloned into KpnI blunt-ended with Klenow and 

EcoRV sites of SAL1 gene on pMW100/6 plasmid resulting in pMW105/5 plasmid. A linear DNA 

fragment including sal1 ::NatMX4 cassette was cut off from this plasmid and introduced by 

transformation into RKY67-1C and MWY79/15 strain bearing the wild type yeast AAC2 gene on a 

Yep352 URA3 plasmid. Transformants were selected on YPGA medium supplemented with 

nourseothricin (nat), 100ug/ml. Homologous integration of sal1::NatMX4 cassette in MWY84/3 and 

MWY83/5 strains was verified by PCR using the primers SalVerif and SalR and by phenotypic analysis. 

Growth and media: The media used for yeast growth were: YPGA (1% (w/v) yeast extract, 1% (w/v) 

peptone, 2% (w/v) glucose, and 40 mg/liter adenine); N3 (1% (w/v) yeast extract, 1% (w/v) peptone, 2% 

(w/v) glycerol; YPGALA (1% (w/v) yeast extract, 1% (w/v) peptone, 2% (w/v) galactose, and 40 mg/liter 

adenine); W0 (0.17% (w/v) yeast nitrogen base without amino acids, 2% (w/v) glucose, amino acids, 

adenine and uracil (media manufactured by Sunrisescience, Erpent, Belgium). Solid media contained 2% 

(w/v) agar. The YPGA or YPGLY BKA plates additionally contained 50 mM sodium citrate, BKA 1 M 

(if yeasts were grown on glucose) or 0.02 M (if yeasts were grown on glycerol) where indicated, and the 

pH 4 was adjusted by 1M citric acid. For mitochondrial isolation yeast cells were cultured to the mid-

logarithmic phase on YPGALA medium (OD=4) at 28 
o
C while shaking at 180 rpm. The 5-FOA plates 

contained W0 medium supplemented with all required amino acids and 0,1% 5-fluooroorotic acid. 

Yeast mitochondrial isolation: Mitochondria from the yeast strains were prepared as described previously 

[48]. Typical yield was ~20 mg of mitochondria from 2 liters of yeast cultures (OD=4). Protein was 

determined by the method of Lowry. 
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Isolation of mitochondria from Artemia franciscana: No permits were required for the described study, 

which complied with all relevant regulations. Mitochondria from embryos of Artemia franciscana were 

prepared as described elsewhere, with minor modifications [2]. Dehydrated, encysted gastrulae of Artemia 

franciscana were obtained from Salt Lake, Utah through Artemia International LLC (Fairview, Texas 

75069, USA) and stored at 4°C until used. Embryos (15 g) were hydrated in 0.25 M NaCl at room 

temperature for at least 24 h. After this developmental incubation, the embryos were dechorionated in 

modified antiformin solution (1% hypochlorite from bleach, 60 mM NaCO3, and 0.4 M NaOH) for 30 

min, followed by a rinse in 1% Na
+
-thiosulfate (5 min) and multiple washings in ice-cold 0.25 M NaCl as 

previously described [49]. After the embryos were filtered through filter paper, ~10 g were homogenized 

in ice-cold isolation buffer consisting of 0.5 M sucrose, 150 mM KCl, 1 mM EGTA, 0.5% (wt/vol) fatty 

acid-free BSA, and 20 mM K
+
-HEPES, pH 7.5, using a glass-Teflon homogenizer at 850 rpm for ten 

passages. The homogenate was centrifuged for 10 min at 300 g at 4°C, the upper fatty layer of the 

supernatant was aspirated and the remaining supernatant was centrifuged at 11,300 g for 10 min. The 

resulting pellet was gently resuspended in the same buffer, avoiding the green core. The green core was 

discarded, and the resuspended pellet was centrifuged again at 11,300 g for 10 min. The final pellet was 

resuspended in 0.4 ml of ice-cold isolation buffer consisting of 0.5 M sucrose, 150 mM KCl, 0.025 mM 

EGTA, and 20 mM K
+
-HEPES, pH 7.5 and contained ~80 mg protein/ml. 

Determination of mitochondrial membrane potential ( m): m of isolated yeast mitochondria was 

estimated as described previously [50], by monitoring the quenching of rhodamine 123 fluorescence (0.5 

μM) using a λexc of 485 nm and a λem of 533 nm at an acquisition rate of 10 Hz with a Cary Eclipse 

Fluorescence Spectrophotometer (Agilent Technologies, Santa Clara, CA, USA) during constant stirring. 

1 mg of yeast mitochondria was added in a 2 ml buffer consisting of 0.65 M mannitol, 0.36 mM EGTA, 1 

mM MgCl2, 15 mM Trizma, 11 mM NaH2PO4, and 10 mM malate; the pH was set in a range of 7.1-7.4 as 

detailed in the Results section. All experiments were performed at 28 
o
C.  

Determination of citrate synthase activity: Citrate synthase activity for the fractions obtained during 

mitochondrial and mitoplast isolations was performed as detailed in [51]. Citrate synthase specific activity 

is expressed as nmol of DTNB (5,5'-dithiobis-(2-nitrobenzoic acid) reduced to NTB (2-nitro-5-

thiobenzoate) per min per mg of protein. Mitoplasts were generated by subjecting 10 mg of mitochondria 

in a 2 ml buffer composed of 20 mM Tris pH 6.8 for 30 min, in the presence of 0.05% digitonin. After 

spinning at 10,000 g for 10 min, the supernatant was removed, and the pellet consisting of mitoplasts was 

resuspended in 0.1 ml of the same buffer. 

Western blotting: SDS-PAGE was performed according to Laemmli [52], with the modifications 

elaborated in [53]. Monoclonal anti-HA antibody (16B12) against HA tag (Berkeley Antibody Company, 

Richmond, CA, USA) was used at a 1:5,000 dilution. Rabbit polyclonal anti-porin was used at a 1:10,000 

dilution. Immunoreactivity was detected in the nitrocellulose papers using peroxidase-linked secondary 

antibodies (1:10,000, DAKO, Agilent Technologies) and enhanced chemiluminescence detection reagent 

(Immobilon Western Chemiluminescent HRP Substrate, Millipore). 

Mass spectrometry: Yeast mitochondria: 2 µl of yeast mitochondria (6 mg/ml) containing 5 pmol beta-

lactoglobulin as an internal standard was incubated for 30 min at 60
 o

C with 1 µl reagent mixture 

containing 0.33 w/w% RapiGest SF and 33 mM dithiothreitol in a total volume of 20 µl. This was 

followed by alkylation for 30 min in the dark at room temperature in the presence of 1 µl 200 mM 

iodoacetamide and 5 µl 200 mM NH4HCO3. Digestion was performed either by trypsin (1 µl, 20 µM) at 

37
 o

C for 90 min or 180 min or by chymotrypsin (1 µL, 39 µM) at 37
 o

C for 90 min or overnight. 

Digestion was quenched by 1 µl formic acid (30 min at 37°C) and the reaction product was centrifuged at 

17,000 g for 10 min. The sample was diluted two times prior to analysis and a 2 µL sample was injected 

on to the capillary LC column. LC–MS/(MS) experiments were carried out using a nanoflow UPLC 

system (nanoAcquity UPLC, Waters, Milford, MA, USA) coupled to a Q-TOF Premier mass 

spectrometer (Waters, Milford, MA, USA). Before separating the peptides on a reverse phase analytical 

column (C18, 75 μm i.d. × 150 mm, 1.7 μm BEH300 particles, Waters, Milford, MA, USA), samples 

were desalted online on a Symmetry C18 trap column (180 μm i.d. × 20 mm, Waters, Milford, MA, 

USA). A gradient was applied using a flow rate of 450 nanol/min and column temperature 55 °C for 100 
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or 200 min, as described previously [54] using aqueous and acetonitrile-containing solvents, both in the 

presence of 0.1 % formic acid. Peptides were identified by tandem mass spectrometry in two separate data 

dependent acquisition modes (DDA). In the first case 2 sec cycles were used, consisting of a full scan 

spectrum (m/z: 500–1999) and MS/MS spectra of the three most abundant ions. In the second case 3 sec 

cycles were applied, consisting of a full scan spectrum (m/z: 400–1500) and MS/MS spectra of the three 

most abundant ions included in the predefined inclusion list. The inclusion list contained the masses of 

the expected tryptic or chymotryptic peptides of ArAAC. Ar collision gas was used in the tandem mass 

spectrometry measurements. ProteinLynx Global Server v.2.3 (Waters, Milford, MA, USA) was used to 

process data of DDA experiments. Mascot Server version 2.2 (Matrix Science, London, UK) was used to 

analyze samples searching against Artemia franciscana taxonomy assuming digestion enzymes trypsin or 

chymotrypsin and allowing for two missed cleavages. Iodoacetamide derivatives of cysteines and 

oxidation of methionines were specified as fixed and variable modifications, respectively. Fragment ion 

mass tolerance of 0.15 Da and a parent ion tolerance of 50 ppm were used and peptides were considered if 

they could be established at greater than 95.0% probability. To identify further peptide fragments, 

additional error-tolerant Mascot searches were performed against Artemia franciscana taxonomy. 

Sample preparation for Artemia franciscana mitochondria lysed in RIPA buffer: Artemia franciscana 

mitochondria in RIPA (radioimmunoassay) buffer were thawed and centrifuged at 16,000 g for 10 min. 

The pellet was solubilized in 5 M urea, 2 M thiourea, 40 mM DTT and 0.1% SDS, and both the pellet and 

the supernatant were cleaned up using the GE Healthcare 2-D Clean-Up Kit per the manufacturer’s 

instructions (GE Healthcare Bio-Sciences Corp., Piscataway NJ). After the clean up, the pellets were 

extracted with 100 mM ammonium bicarbonate, pH 7.8 and sonicated for 10 min in a bath sonicator. 

After centrifugation, the extraction and sonication steps were repeated on pellets still remaining. 

Supernatants were combined and the protein concentration was determined using the Pierce 660 nm assay 

as per the manufacturer’s instructions (Pierce, Rockford IL). Three 60 g protein portions were 

electrophoresed by SDS-PAGE using a 7 cm 10% Mini-Protean TGX gel from BioRad (BioRad, 

Hercules CA) and stained with BioSafe Coomassie Blue (BioRad, Hercules CA). The gel lanes were 

digested with trypsin following reduction with DTT and alkylation with iodoacetamide, followed by 

peptide extraction from the gel lane [55]. The peptide digest was cleaned up using Spec-C18 cartridges 

(Varian, Lake Forest, CA) 

LC-LC-MS/MS analysis of the RIPA-lysed mitochondria: For LC-LC-MS/MS analysis, a microbore 

HPLC system (Surveyor, Thermo Fisher Scientific, San Jose, CA) was used with separate strong cation 

exchange (SCX) and reversed phase (RP) columns: a 100 μm I.D. capillary packed with 3.5 cm of 5 µm 

PolySulfoethyl-Asp strong cation exchanger (PolyLC Inc., Columbia, MD) and a separate 100 μm I.D. 

capillary packed with 7.5 cm of 5 µm Zorbax Eclipse XDB-C18 material (Agilent, Santa Clara, CA). 

Peptides were acidified using trifluoroacetic acid and 30 g was manually loaded by pressure packing 

onto the SCX column. Peptides were eluted at 400 nl/min by a reverse phase gradient using Buffer A 

(water/0.1% formic acid), Buffer B (acetonitrile/0.1% formic acid), preceded by a salt bump using Buffer 

C (250 mM ammonium acetate), and Buffer D (1.5 M ammonium acetate). Twelve steps were then 

performed as follows: (step 1) 0% C with an RP gradient of 5-50% B over 90 minutes followed by a 

column clean-up of 5 minutes using 50-98% B and an equilibration of 20 min with 5% B.  (steps 2-11) 

X% C (where X = 10-100% C increased in increments of 10%; the remaining % was Buffer A) loaded 

over 4 min and then washed with 5% B for 7 min followed by a RP gradient of 5-50% B over 60 min.  

Each RP gradient was followed by a column clean-up of 5 min using 50-98% B and an equilibration of 20 

min with 5% B.  Step 12: 50% D loaded over 4 min and then washed with 5% B for 7 min followed by a 

gradient of 5-50% B over 60 min.  The flow rate was 1000 nl/min for the 7-minute washes following each 

salt bump and for each final 5% B equilibration step. Peptides were directly sprayed into a 

ThermoFinnigan LTQ linear ion trap mass spectrometer (Thermo Fisher Scientific, San Jose, Ca) using a 

custom-built nanoelectrospray ionization source. Electrospray voltage of 2.0 kV was applied using a gold 

electrode via a liquid junction upstream of the column. Spectra were scanned over the range 400-1500 

atomic mass units (amu).  Automated peak recognition, dynamic exclusion (45 seconds), and daughter ion 

scanning of the top seven most intense ions were performed using the Xcalibur v 1.4 SR1 data system 
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(Thermo Fisher Scientific, San Jose CA)  [56]. The LC-LC-MS/MS analysis was repeated twice for a total 

of three replicates and the data were combined. Tandem MS spectra of peptides were analyzed with 

TurboSEQUEST
TM

 v 3.1, a program that allows the correlation of experimental tandem MS data with 

theoretical spectra generated from known protein sequences [57]. The peak list for the search was 

generated by Bioworks 3.1 (Thermo Fisher Scientific, San Jose, CA) considering fully tryptic peptides 

with up to two missed cleavages. Iodoacetamide derivatives of cysteines and oxidation of methionines 

were specified as variable modifications. Parent peptide mass error tolerances were set at 1.5 amu and 

fragment ion mass tolerance set at 0.5 amu during the search. Preliminary peptide identifications were 

made using the following Xcorr filters: peptide precursor ions with a +1 charge having a Xcorr >1.8, +2  

Xcorr > 2.5 and +3 Xcorr > 3.5. A deltaCn score > 0.08 was also used as filtering criteria for reliable 

matched peptide identification [58], [59]. Tandem mass spectra were searched against mouse genes 

encoding proteins with strong support of mitochondrial localization downloaded from the Broad Institute 

(http://www.broadinstitute.org/pubs/MitoCarta/index.html), on July 27, 2012. At the time of the search 

this Mouse MitoCarta protein database contained 1,173 entries. Additionally, the tandem mass spectra 

were searched against Crustacea proteins downloaded from NCBI on July 25, 2012 and appended with 

common contaminant proteins (eg., human keratins, trypsin, etc). At the time of the search this custom 

protein database contained 108,788 entries. The results were also validated using the search engine 

X!Tandem [60], and displayed with Scaffold v 3.6.1 (Proteome Software Inc., Portland OR), a program 

that relies on various search engine results (i.e: Sequest, X!Tandem, MASCOT) and which uses Bayesian 

statistics to reliably identify more spectra [61]. 
Sample preparation for Artemia franciscana mitochondria lysed by freeze/thaw in water:  SDS was added 

to the lysate at a final concentration of 0.1% and the lysate was sonicated for 5 sec using a probe 

sonicator. Proteins were precipitated with acetone. After centrifugation at 16,000 g for 10 min the topmost 

lipid layer and the supernatant were removed and discarded. The pellet was extracted with 8M urea/1M 

guanadine HCl, sonicated as described above, and subjected to a round of freeze/thawing. After 

centrifugation the supernatant was saved and the pellet was extracted with 8M urea then centrifuged and 

the supernatant was removed and saved. The combined supernatants were assayed for protein 

concentration using the Pierce 660 nm reagent as per the manufacturer’s instructions (Pierce, Rockford 

IL). The pellets from the processing steps described above were dissolved in Laemmli sample buffer, 

combined, and assayed for protein concentration as described previously. One mg portions of the 

supernatant fraction were either delipidated ([62] or cleaned up using the GE Healthcare 2-D Clean-Up 

Kit as per the manufacturer’s instructions (GE Healthcare, Piscataway NJ). The samples were fractionated 

by SDS-PAGE; 10 g each of the delipidated sample, the kit-processed sample, and the pellets was 

loaded on a 15% acrylamide Criterion gel (BioRad, Hercules, CA), and after electrophoresis the gel was 

stained with BioSafe Coomassie Blue (BioRad, Hercules CA). Each gel lane was cut into 8 sections and 

the sections were digested with trypsin following reduction with DTT and alkylation with iodoacetamide, 

followed by peptide extraction from the gel sections [55].  
LC MS/MS analysis of the freeze/thaw lysed Artemia franciscana mitochondria: LC-MS/MS analysis of 

trypsin-digested gel sections was carried out using a LTQ Orbitrap Velos mass spectrometer (Thermo 

Fisher Scientific, San Jose, CA) equipped with an Advion nanomate ESI source (Advion, Ithaca, NY), 

following ZipTip C18 sample clean up according to the manufacturer’s instructions (Millipore, Billerica, 

MA). Peptides were eluted from a C18 precolumn (100-μm id × 2 cm, Thermo Fisher Scientific) onto an 

analytical column (75-μm ID × 10 cm, C18, Thermo Fisher Scientific) using a 5% hold of solvent B 

(acetonitrile, 0.1% formic acid) for 5 min, followed by a 5-7% gradient of solvent B over 5 min, 7-15% 

gradient of solvent B over 45 min, 15-35% gradient of solvent B over 60 min, 35-40% gradient of solvent 

B over 28 min, 40-85% gradient of solvent B over 5 min, 85% hold of solvent B for 10 min and finally a 

return to 5% in 1 minute and another 10 minute hold of 5% solvent B. All flow rates were 400 nl/min. 

Solvent A consisted of water and 0.1% formic acid. Replicate runs were also performed using a shorter 

125 minute RP gradient (5% solvent B hold for 10 min, 5-20% gradient of solvent B over 65 min, 

followed by a 20-35% gradient of solvent B over 25 min, 35% solvent B hold for 9 min, 35-95% gradient 

of solvent B over 5 min, and finally by a 95% solvent B hold for another 5 minutes). Data dependent 

http://www.broadinstitute.org/pubs/MitoCarta/index.html
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scanning was performed by the Xcalibur v 2.1.0 software [56] using a survey mass scan at 60,000 

resolution in the Orbitrap analyzer scanning mass/charge (m/z) 400-1600, followed by collision-induced 

dissociation (CID) tandem mass spectrometry (MS/MS) of the 14 most intense ions in the linear ion trap 

analyzer. Precursor ions were selected by the monoisotopic precursor selection (MIPS) setting with 

selection or rejection of ions held to a +/- 10 ppm window. Dynamic exclusion was set to place any 

selected m/z on an exclusion list for 45 seconds after a single MS/MS. All MS/MS spectra were searched 

against the protein databases as described above using Thermo Proteome Discoverer 1.3 (Thermo Fisher 

Scientific) considering fully tryptic peptides with up to two missed cleavages. Iodoacetamide derivatives 

of cysteines and oxidation of methionines were specified as variable modifications. Proteins were 

identified at 99% confidence with XCorr score cut-offs [59] as determined by a reversed database search. 

The protein and peptide identification results were also visualized with Scaffold v 3.6.1 (Proteome 

Software Inc., Portland OR), a program that relies on various search engine results (i.e.: Sequest, 

X!Tandem, MASCOT) and which uses Bayesian statistics to reliably identify more spectra [61]. Proteins 

were accepted that passed a minimum of two peptides identified at 95% peptide confidence and 99.9% 

protein confidence by the Peptide and Protein Profit algorithms, respectively, within Scaffold. 
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FIGURE LEGENDS 

 

Figure 1: ArAAC integration cassette including coding sequence of ArACC gene fused to HA tag and 

hygromycin cassette (HphNTI) flanked by promoter and terminator sequences of yeast AAC2 gene. The 

order of PCR reactions is described in 'Materials and Methods' section. The positions of the primers used 

for PCR reactions (marked by numbers corresponding to the numbered primers listed in Table II) and the 

length of DNA fragments are also indicated. 

 

Figure 2: The ArAac protein is expressed and targeted to yeast mitochondria. Total extract (T), 

mitochondrial (M), post-mitochondrial supernatant (S) and mitoplast (MP) fractions were prepared from 

strains expressing heterologous Artemia Aac proteins as indicated in the table on the top:. 'no' signifies 

absence of the gene indicated in the left-most column; 'Yes' signifies the presence of the gene indicated in 

the left-most column. Samples of 25 µg of each fractiontotal (T) or post-mitochondrial supernatants (S) 

and 13 µg of mitochondrial proteins (M) or mitoplasts (MP) were separated on 10% polyacrylamide gel 

electrophoresis. Blots were probed for ArAAC (HA tag) and porin in the same solutions. The Western 

blot results shown are typical from three independent experiments. In the lower bar graph, citrate synthase 

activities of the same fractions is are depicted. 

 

Figure 3: Viability of modified and control yeast strains in response to BKA (1 M for the glucose-

containing plates, and 20 nM for the glycerol-containing plates). Yeast strains were grown on media 

indicated in the panels in the absence or presence of BKA at 28 °C. Each lane contains spots with initially 

106, 105, 104, 103 and 102 cells (top to bottom). The genotypes of the strains are given in the table 

shown on the top of the figure: 'no' signifies absence of the gene indicated in the left-most column; 'Yes' 

signifies the presence of the gene indicated in the left-most column:. 1 (MWY80) - aac1  aac2  aac3 , 

2 (MWY85/9) - sal1 , 3 (MR6) – WT, 4 (RKY67-1C), 5 (RKY67-1D) – two independent clones aac1  

aac3  AAC2, 6 (MWY79/15), 7 (MWY79/17) - two independent clones aac1  aac3  ArAAC, 8 

(MWY84/4) - aac1  aac3  AAC2 sal1 , 9 (MWY83/5), 10 (MWY83/1) - two independent clones aac1  

aac3  ArAAC sal1  [AAC2]. Plates were scanned after 4 (glucose) or 6 (glycerol) days of incubation. 
 

Figure 4: The ArAac protein expressed in yeasts is sensitive to BKA. In the table on top the yeast strains 

and their expression of adenine nucleotide carriers and SAL1 is indicated; 'no' signifies absence of the 

gene indicated in the left-most column; 'Yes' signifies the presence of the gene indicated in the left-most 

column. . In the panels, reconstructed time courses of rhodamine 123 fluorescence (expressed as % of 
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m) as functions of time are shown. In the top three panels mitochondria from strains RKY67-1C 

(black and grey traces) and MWY79/15 (green and magenta traces) express SAL1. In the bottom three 

panels, mitochondria from strains MWY84/4 (black traces) and MWY83/5 (green traces) do not express 

SAL1. The pH of the media is indicated on the top of each panel. EtOH signifies ethanol.  

 

Figure 5: Primary sequence coverage of ArAAC expressed in yeast and ArAAC expressed in Artemia 

franciscana as determined from all mass spectrometry experiments described in 'Materials and Methods'. 

Sequence coverage was based on searching peptide tandem spectra against the Artemia franciscana 

protein from NCBI, as described in the text.  A: Primary sequence coverage of Artemia franciscana 

adenine nucleotide translocator protein (gi|308390607) expressed in Artemia franciscana. 70% Sequence 

coverage was obtained by identifying 210/301 residues (green) in the protein. B: Primary sequence 

coverage of Artemia franciscana adenine nucleotide translocator protein (gi|308390607) expressed in 

Saccharomyces cerevisiae (strain MWY79/15). 62% Sequence coverage was obtained by identifying 

188/301 residues (green). 

 

 

 

 

 

 

 

 

TABLES 

 

Table I. Strains used in this work 

Strain Nuclear genotype Source 

MR6 MATa ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 arg8::HIS3 [63] 

RKY67-1C MATa ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 arg8::HIS3 

aac1 KanMX4 aac3 KanMX4 AAC2 

This study 

RKY67-1D MATa ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 arg8::HIS3 

aac1 KanMX4 aac3 KanMX4 AAC2 

This study 

MWY80 MATa ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 arg8::HIS3 

aac1 KanMX4 aac3 KanMX4 aac2 HphNTI 

This study 

MWY85/9 MATa ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 arg8::HIS3 

sal1 ::NatMX4 

This study 

MWY79/15 MATa ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 arg8::HIS3 

aac1 KanMX4 aac3 KanMX4 aac2 ::ArAAC-HA-HphNTI 

This study 

MWY79/17 MATa ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 arg8::HIS3 

aac1 KanMX4 aac3 KanMX4 aac2 ::ArAAC-HA-HphNTI 

This study 

MWY84/3 
MATa ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 arg8::HIS3 

aac1 KanMX4 aac3 KanMX4 sal1 ::NatMX4 

This study 

MWY83/1 MATa ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 arg8::HIS3 

aac1 KanMX4 aac3 KanMX4 aac2 ::ArAAC-HA-HphNTI 

sal1 ::NatMX4 [AAC2/pYep352] 

This study  

MWY83/5 MATa ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 arg8::HIS3 

aac1 KanMX4 aac3 KanMX4 aac2 ::ArAAC-HA-HphNTI 

sal1 ::NatMX4 [AAC2/pYep352] 

This study  
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Table II. Oligonucleotides used in this work. Restriction sites for XbaI and EcoRI sites are underlined.  

Oligonucleotide Sequence Goal 

AAC1Up GCGACTCAGCGTACGTAGG AAC1 deletion 

AAC1Low CGTAAACGGTTCCCTTCCGC AAC1 deletion 

AAC1Ver ACTACATGCACGAGGCCTTGGC AAC1 deletion verification 

AAC3Up TTTCATTGTTTGGTTGCCTTC AAC3 deletion 

AAC3Low ATCCAACCATCTGAAAGCCG AAC3 deletion 

AAC3Ver GCTTCCAATGGCCTCCTCACCG AAC3 deletion verification 

KanMX-Up GGATGTATGGGCTAAATGTA AAC3 deletion verification 

ArAnt F: ATG GCA ACC AAG AAG CAA GCG G ArACC amplification 

ArAnt R: CTA ACC AAT AAG CAC TTT AAG CTC ArACC amplification 

1 ANTcon GTCTAGAAACATCACGATGCACGAGC

ACTGT  

ACC2 promoter amplification 

2 ANTcon GTAAGCGTAATCTGGAACATCGTATG

GGTAGATATCGGCTATTTGCTTATATG

TATGTTAATG 3’ 

ACC2 promoter amplification 

3 ANTcon CAT TAA CAT ACA TAT AAG CAA ATA 

GCCGAT ATC TAC CCA TAC GAT GTT 

CCA GAT TAC GCT TACCC  

HA tag encoding sequence 

amplification 

4 ANTcon CATAAATCATAAGAAATTCGCTTATTT

AGAAGTGCTAAGCGTAATCTGGAACA

TCGTATGGGTA  

HA tag encoding sequence 

amplification 

5 ANT con CCCATACGATGTTCCAGATTACGCTTA

GCACTTCTAAATAAGCGAATTTCTTAT

GATTTATG  

HphNTI gene sequences 

amplification 

6 ANT con GATTAAGAATCAAGCCAGATTAGACT

TATTCCTTTGCCCTCGGACGAGTGCTG 

HphNTI gene sequences 

amplification 

7 ANT con CAGCACTCGTCCGAGGGCAAAGGAAT ACC2 terminator amplification 
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AAGTCTAATCTGGCTTGATTCTTAATC 

8 ANT con GTCTAGACGGCACAAAGAGTGATAGA

CCTATTTGGC 

ACC2 terminator amplification 

9upANT CGATATCATGGCAACCAAGAAGCAAG

CGGATCCCCTC 

ArACC gene amplification 

10forANT CGATATCACCAATAAGCACTTTAAGCT

CGTCATAGAA 

ArACC gene amplification 

AAC2veri AACATCACGATGCACGAGCACTG  Cassette integration verification 

AAC2low GAGTGATAGACCTATTTGGCGGTG Cassette integration verification 

Sal1-Up CAGGCAATTAACCTTGTGTTTCTGACG SAL1 gene amplification 

Sal1-Low CCACAAACCGCAGCAGCGGTTTATAA SAL1 gene amplification 

SalVerif GTTCCAACTTGGGCATTTTTCAGAG Sal1::NatMX4 integration 

verification 

SalR CCACAAACCGCAGCAGCGGTTTATAA Sal1::NatMX4 integration 

verification 

 


