258 research outputs found
Recommended from our members
Development of Sociomoral Knowledge: A Cognitive-Structural Approach
This dissertation organizes in a conceptually and historically coherent form the available knowledge on socio-moral development. The purpose in doing so is to bring the information into the mainstream of social work education and practice. Emphasis is placed upon the significance and compatibility of sociomoral development to the field of social work from interventive, psychological, and philosophical perspectives. It is viewed as congenial to ego psychology and as fitting within the ecosystems orientation being advanced by contemporary social work theorists. Its potential as a heuristic model for generating new and effective methods of intervention across a diverse range of settings and populations is elaborated upon.
The material synthesized in this dissertation is organized and presented within the cognitive-structural framework of Jean Piaget. At the heart of the synthesis, however, is the moral developmental psychology and philosophy of Lawrence Kohlberg. The six stages of moral development which Kohlberg's longitudinal research have led him to identify are elaborated upon at length. They are posited as universal stages in light of the extant cross-cultural validation. Although only a relatively small number of people pass through all six stages, it is necessary that passage through each stage be in an unvarying sequence. Each stage signifies a particular conception of justice that is more differentiated and integrated than the previous one and is, hence, said to be more adequate for resolving competing claims between individuals or between an individual and the general welfare. In order to successfully achieve any given stage, it is necessary to first arrive at a corresponding stage of social perspectivism, which is the ability to take another's or a societal point of view. Therefore, the relevant work on perspectivism of Mead, Feffer, Flavell, and Selman is examined. The relationship between cognition and moral development, as well as between moral judgment and behavior, is also explored.
To provide depth and full comprehension of Kohlberg's work, the cognitive-structural developmental psychology of Piaget is formulated, followed by an extensive presentation of Piaget's early and only material on moral judgment, which serves as a point of departure for Kohlberg. An analysis is offered to differentiate areas of agreement and disagreement between Piaget's and Kohlberg's basic findings on moral development, the latter position representing a refinement and extension of the former.
One section of the dissertation is devoted exclusively to marshaling criticisms against Kohlberg's methodological practices and the theory supporting his psychology and philosophy. A related section provides a comparative analysis of alternate approaches to moral development, focusing specifically upon psychoanalytic and social learning models. In effect, the presentation of opposing approaches, held to be viable by
their proponents, also constitutes critical commentary.
Methods of intervention are classified into psycho-dynamic, interpersonal, and organizational categories. Assignment of an interventive method is more a matter of emphasis, however, than mutually exclusive categories.
It is urged that the Piaget-Kohlberg sociomoral model, based upon a cognitive-structural developmental psychology, be integrated into social work education. It would contribute to professional education a relevant, but neglected, body of knowledge and would also provide a means for facilitating the sociomoral advance of students. Most importantly, this
organismic-environmental model of human development would provide new strategies of intervention that could be readily assimilated to the philosophy of contemporary social work practice
FTY720 (fingolimod) modulates the severity of viral-induced encephalomyelitis and demyelination.
BackgroundFTY720 (fingolimod) is the first oral drug approved by the Food and Drug Administration for treatment of patients with the relapsing-remitting form of the human demyelinating disease multiple sclerosis. Evidence suggests that the therapeutic benefit of FTY720 occurs by preventing the egress of lymphocytes from lymph nodes thereby inhibiting the infiltration of disease-causing lymphocytes into the central nervous system (CNS). We hypothesized that FTY720 treatment would affect lymphocyte migration to the CNS and influence disease severity in a mouse model of viral-induced neurologic disease.MethodsMice were infected intracranially with the neurotropic JHM strain of mouse hepatitis virus. Infected animals were treated with increasing doses (1, 3 and 10 mg/kg) of FTY720 and morbidity and mortality recorded. Infiltration of inflammatory virus-specific T cells (tetramer staining) into the CNS of FTY720-treated mice was determined using flow cytometry. The effects of FTY720 treatment on virus-specific T cell proliferation, cytokine production and cytolytic activity were also determined. The severity of neuroinflammation and demyelination in FTY720-treated mice was examined by flow cytometry and histopathologically, respectively, in the spinal cords of the mice.ResultsAdministration of FTY720 to JHMV-infected mice resulted in increased clinical disease severity and mortality. These results correlated with impaired ability to control viral replication (P < 0.05) within the CNS at days 7 and 14 post-infection, which was associated with diminished accumulation of virus-specific CD4+ and CD8+ T cells (P < 0.05) into the CNS. Reduced neuroinflammation in FTY720-treated mice correlated with increased retention of T lymphocytes within draining cervical lymph nodes (P < 0.05). Treatment with FTY720 did not affect virus-specific T cell proliferation, expression of IFN-γ, TNF-α or cytolytic activity. FTY720-treated mice exhibited a reduction in the severity of demyelination associated with dampened neuroinflammation.ConclusionThese findings indicate that FTY720 mutes effective anti-viral immune responses through impacting migration and accumulation of virus-specific T cells within the CNS during acute viral-induced encephalomyelitis. FTY720 treatment reduces the severity of neuroinflammatory-mediated demyelination by restricting the access of disease-causing lymphocytes into the CNS but is not associated with viral recrudescence in this model
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure
The future of medical diagnostics: Review paper
While histopathology of excised tissue remains the gold standard for diagnosis, several new, non-invasive diagnostic techniques are being developed. They rely on physical and biochemical changes that precede and mirror malignant change within tissue. The basic principle involves simple optical techniques of tissue interrogation. Their accuracy, expressed as sensitivity and specificity, are reported in a number of studies suggests that they have a potential for cost effective, real-time, in situ diagnosis. We review the Third Scientific Meeting of the Head and Neck Optical Diagnostics Society held in Congress Innsbruck, Innsbruck, Austria on the 11th May 2011. For the first time the HNODS Annual Scientific Meeting was held in association with the International Photodynamic Association (IPA) and the European Platform for Photodynamic Medicine (EPPM). The aim was to enhance the interdisciplinary aspects of optical diagnostics and other photodynamic applications. The meeting included 2 sections: oral communication sessions running in parallel to the IPA programme and poster presentation sessions combined with the IPA and EPPM posters sessions. © 2011 Jerjes et al; licensee BioMed Central Ltd
The genetic architecture of the human cerebral cortex
The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
The Reform of China's Energy Policies
China's shift in energy policies has been broader, deeper and more successful than that of most other emerging economies, although the economic costs of this transition are tremendous because China is an over-industrialized country whose production is highly energy-intense and it depends on emission-intensive coal as main energy source. Factors that have influenced energy reforms, which focus on saving and conserving energy, developing renewable sources and nuclear power, are - on the international level - the impact of climate change on India, the desire to be recognized as a responsible power in the international community, China's dangerously growing dependence on energy imports, and the uncertain prospects of equity oil abroad for energy security. Domestic factors are the growing assertiveness of environmental NGOs, relatively effective sectorial governance, and the embedding of energy policies in a blueprint for industrial upgrading
A methodology for exploring biomarker – phenotype associations: application to flow cytometry data and systemic sclerosis clinical manifestations
BACKGROUND: This work seeks to develop a methodology for identifying reliable biomarkers of disease activity, progression and outcome through the identification of significant associations between high-throughput flow cytometry (FC) data and interstitial lung disease (ILD) - a systemic sclerosis (SSc, or scleroderma) clinical phenotype which is the leading cause of morbidity and mortality in SSc. A specific aim of the work involves developing a clinically useful screening tool that could yield accurate assessments of disease state such as the risk or presence of SSc-ILD, the activity of lung involvement and the likelihood to respond to therapeutic intervention. Ultimately this instrument could facilitate a refined stratification of SSc patients into clinically relevant subsets at the time of diagnosis and subsequently during the course of the disease and thus help in preventing bad outcomes from disease progression or unnecessary treatment side effects. The methods utilized in the work involve: (1) clinical and peripheral blood flow cytometry data (Immune Response In Scleroderma, IRIS) from consented patients followed at the Johns Hopkins Scleroderma Center. (2) machine learning (Conditional Random Forests - CRF) coupled with Gene Set Enrichment Analysis (GSEA) to identify subsets of FC variables that are highly effective in classifying ILD patients; and (3) stochastic simulation to design, train and validate ILD risk screening tools. RESULTS: Our hybrid analysis approach (CRF-GSEA) proved successful in predicting SSc patient ILD status with a high degree of success (>82 % correct classification in validation; 79 patients in the training data set, 40 patients in the validation data set). CONCLUSIONS: IRIS flow cytometry data provides useful information in assessing the ILD status of SSc patients. Our new approach combining Conditional Random Forests and Gene Set Enrichment Analysis was successful in identifying a subset of flow cytometry variables to create a screening tool that proved effective in correctly identifying ILD patients in the training and validation data sets. From a somewhat broader perspective, the identification of subsets of flow cytometry variables that exhibit coordinated movement (i.e., multi-variable up or down regulation) may lead to insights into possible effector pathways and thereby improve the state of knowledge of systemic sclerosis pathogenesis. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-015-0722-x) contains supplementary material, which is available to authorized users
Recommended from our members
Advancing Biological Understanding and Therapeutics Discovery with Small-Molecule Probes
Small-molecule probes can illuminate biological processes and aid in the assessment of emerging therapeutic targets by perturbing biological systems in a manner distinct from other experimental approaches. Despite the tremendous promise of chemical tools for investigating biology and disease, small-molecule probes were unavailable for most targets and pathways as recently as a decade ago. In 2005, the U.S. National Institutes of Health launched the decade-long Molecular Libraries Program with the intent of innovating in and broadening access to small-molecule science. This Perspective describes how novel small-molecule probes identified through the program are enabling the exploration of biological pathways and therapeutic hypotheses not otherwise testable. These experiences illustrate how small-molecule probes can help bridge the chasm between biological research and the development of medicines, but also highlight the need to innovate the science of therapeutic discovery.Chemistry and Chemical Biolog
- …