95 research outputs found

    Investigating the Potential of a Newly Developed UAV-Mounted VNIR/SWIR Imaging System for Monitoring Crop Traits-A Case Study for Winter Wheat

    Get PDF
    UAV-based multispectral multi-camera systems are widely used in scientific research for non-destructive crop traits estimation to optimize agricultural management decisions. These systems typically provide data from the visible and near-infrared (VNIR) domain. However, several key absorption features related to biomass and nitrogen (N) are located in the short-wave infrared (SWIR) domain. Therefore, this study investigates a novel multi-camera system prototype that addresses this spectral gap with a sensitivity from 600 to 1700 nm by implementing dedicated bandpass filter combinations to derive application-specific vegetation indices (VIs). In this study, two VIs, GnyLi and NRI, were applied using data obtained on a single observation date at a winter wheat field experiment located in Germany. Ground truth data were destructively sampled for the entire growing season. Likewise, crop heights were derived from UAV-based RGB image data using an improved approach developed within this study. Based on these variables, regression models were derived to estimate fresh and dry biomass, crop moisture, N concentration, and N uptake. The relationships between the NIR/SWIR-based VIs and the estimated crop traits were successfully evaluated (R-2: 0.57 to 0.66). Both VIs were further validated against the sampled ground truth data (R-2: 0.75 to 0.84). These results indicate the imaging system's potential for monitoring crop traits in agricultural applications, but further multitemporal validations are needed.Peer reviewe

    Quantitative pressure and strain field analysis of helium precipitates in silicon

    Get PDF
    Abstract The structural properties of overpressurised helium precipitates formed by low dose ion implantation and subsequent annealing of silicon are investigated by quantitative transmission electron microscopy techniques. These precipitates, which show pronounced platelet geometry, are analysed with respect to their geometry, crystallographic orientation and their particular gas pressure values. The dependence of the measured platelet pressure versus the radius is discussed in terms of a Griffith crack. Experimental results on the shape and the crystallographic orientation of the platelets are discussed in the framework of anisotropic elastic properties and surface energies of silicon. The ability of the precipitates to punch-out dislocation loops is discussed in terms of associated threshold shear stress values and evaluated with regard to the defect size dependency

    Wind Power Persistence Characterized by Superstatistics

    Get PDF
    Mitigating climate change demands a transition towards renewable electricity generation, with wind power being a particularly promising technology. Long periods either of high or of low wind therefore essentially define the necessary amount of storage to balance the power system. While the general statistics of wind velocities have been studied extensively, persistence (waiting) time statistics of wind is far from well understood. Here, we investigate the statistics of both high- and low-wind persistence. We find heavy tails and explain them as a superposition of different wind conditions, requiring q-exponential distributions instead of exponential distributions. Persistent wind conditions are not necessarily caused by stationary atmospheric circulation patterns nor by recurring individual weather types but may emerge as a combination of multiple weather types and circulation patterns. This also leads to Fréchet instead of Gumbel extreme value statistics. Understanding wind persistence statistically and synoptically may help to ensure a reliable and economically feasible future energy system, which uses a high share of wind generation

    Evolution of the defect structure in helium implanted SiGe/Si heterostructures investigated by in-situ annealing in a transmission electron microscope

    Get PDF
    The evolution of the He-implantation induced defect structure in SiGe/Si heterostructures is observed during in situ annealing at 650 and 800 degreesC within a transmission electron microscope. The He implantation and annealing results in the formation of He precipitates below the SiGe/Si interface, which at first show a platelike shape and subsequently decay into spherical bubbles. The coarsening mechanism of the He bubbles is revealed as coalescence via movement of entire bubbles. The nucleation of dislocation loops at overpressurized He platelets and their propagation into the heterostructure could be observed as well. We found distinctly different velocities of the dislocations which we attribute to glide and climb processes. The in situ experiments clearly show that the He platelets act as internal dislocation sources and play a key role in the relaxation of SiGe layers. (C) 2005 American Institute of Physics
    • …
    corecore