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Wind Power Persistence Characterized by Superstatistics
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Mitigating climate change demands a transition towards renewable electricity generation, with
wind power being a particularly promising technology. Long periods either of high or of low wind
therefore essentially define the necessary amount of storage to balance the power system. While
the general statistics of wind velocities have been studied extensively, persistence (waiting) time
statistics of wind is far from well understood. Here, we investigate the statistics of both high- and
low-wind persistence. We find heavy tails and explain them as a superposition of different wind
conditions, requiring g-exponential distributions instead of exponential distributions. Persistent
wind conditions are not necessarily caused by stationary atmospheric circulation patterns nor by
recurring individual weather types but may emerge as a combination of multiple weather types
and circulation patterns. This also leads to Fréchet instead of Gumbel extreme value statistics.

Understanding wind persistence statistically and synoptically may help to ensure a reliable and

economically feasible future energy system, which uses a high share of wind generation.

INTRODUCTION

The 2°C target of the Paris agreement [1] requires a
rapid decarbonization of the energy sector [2, 3]. The
most promising technologies to reach this goal are wind
and solar power generation, which have shown a re-
markable development in the last decade [4-7|, paving
the way to a fully renewable energy supply [8, 9]. How-
ever, integrating the specifically important wind power
generators [9] into the power system comes with a large
challenge: Wind power generation is strongly modu-
lated by weather conditions and thus strongly fluctuates

on time scales from seconds to weeks or even decades
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[10-13].

A variety of technical measures is currently being de-
veloped to cope with these fluctuations in the power
system. Virtual inertia [14], batteries [15-17], or smart
grid applications [18, 19] might balance the grid for
seconds, minutes or a few hours. For time periods of
many minutes or several hours, pumped hydro storage
is capable of providing back-up power [20]. However, it
remains unclear how to act when low wind conditions
persist for several days or weeks.

Long periods characterized by a persistent and
quasi-stationary blocking high pressure weather system
(which may endure several weeks) lead to sustained
low-wind velocities and thus constitute extreme weather
events [21], posing a substantial challenge to the oper-

ation of highly renewable power systems. During these
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920

periods, the power demand must be entirely satisfied by
other renewable generators, backup power plants [22] or
long-term electricity storage, which is not yet available
at that scale [23]. Not the average power output of wind
farms, but the extreme event statistics is essential when
dimensioning the necessary backup options [9, 24-26].
It is assumed that these extreme events without renew-
able generation occur rarely, but a clear quantitative

understanding is missing.

In addition, periods with continuously high-wind
power generation have also striking impacts on elec-
tricity grids and markets. A high-wind power feed-
in already led to negative electricity prices [27] and
lead to transmission grid congestion [28, 29]. In future
highly renewable energy systems, these high-wind peri-
ods determine the potential for new applications such as
Power-to-Heat or Power-to-Gas [30] or the occurrence of
surplus electricity and the need of curtailment [31-33].

Again, the question arises: How long can these periods

last and how likely do they occur?

To answer these questions, we need to investigate and
understand the statistics of long periods with very low
or very high power generation by wind [22]. While the
statistics of wind velocities [34, 35], its increment statis-
tics [36-38] and the associated power generation [13, 39|
have been explored extensively, the persistence of wind
[40, 41] and its extreme event statistics [42] are less

studied and far from well understood.

In this article, we investigate the persistence (wait-
ing time) statistics of low- and high-wind situations
in Europe. We thus analyze the duration of periods
where wind velocities v constantly stay below or above
a certain limiting value. The study is carried out for
various locations in Europe and complemented with an
analysis of aggregated power generation for individual
countries and a detailed synoptic analysis. We mainly
focus on the statistical analysis of the wind data and

its interconnection with the synoptic system. Overall,

we demonstrate how non-standard statistics are neces-
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sary to describe waiting time persistence distributions.
Further, we argue that dynamical large-scale weather
conditions [43] contribute to local persistence statistics.
This might impact future energy modelling by requiring

additional storage capacity.

RESULTS

Wind persistence statistics

Extreme wind conditions represent a major challenge
for the operation of future highly renewable power sys-
tems. The aggregated wind velocity statistics follow a
well-known Weibull distribution [34, 46], which can be
used to derive the probability for situations with low
and high-wind power generation, see Fig. la. In con-
trast, much less attention has been paid towards the
temporal patterns of wind. Especially the probability
of long durations with low-wind power are of central
importance to assess the reliability of renewable power
systems and to plan necessary backup infrastructures
[9, 22, 35].

Here, we analyze the persistence statistics of wind
velocities and wind power using publicly available wind
data sets provided by the EURO-CORDEX consortium
[47] with high temporal and spatial resolution. In par-
ticular, we use wind speeds from the ERA-Interim Re-
analysis data set [44] which is downscaled to a high spa-
tial and temporal resolution using the regional model
RCA4 [48]. The wind velocity time series covers a
grid all over Europe for a time frame of 31 years from
1980-2010 with 3-hour time resolution. The simula-
tions have a horizontal resolution of 0.11°, such that
local orographic effects and the impact of large-scale
atmospheric dynamics are captured realistically. ERA-
Interim Reanalysis are widely used as boundary condi-
tions for EURO-CORDEX regional climate model sim-
ulations, also for wind energy applications, see e.g.

[49, 50]. We therefore conclude that this data set forms
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Figure 1. Extracting wind persistence statistics from trajectory data. a: The downscaled ERA-Interim data at Alpha
Ventus [44] provide a trajectory of wind velocities with a 3-hour resolution. b: The aggregated wind velocities approximately
follow a Weibull distribution. The blue curve reports the recorded data and the red curve depicts the most-likely Weibull
distribution, with shape parameter o ~ 2.36 and scale parameter 8 ~ 9.66. c: If the wind velocity drops below a threshold
of v = 4 m/s (dashed red line in panel a), we count the full period until it crosses the threshold again as low-wind duration
and gather these events for our persistence statistics. For high-wind speeds, we analogously employ an upper threshold of
v = 12 m/s (not shown). Note that the plots and thresholds use the velocity scaled up from 10 m to a typical hub height of
100 m, using a power law, see Methods for details. While the mean velocity in panel (b) is close to the upper threshold, we
note that here we are using data from an offshore wind farm location, with typically high wind velocities. Most wind turbines
reach their rated power at v = 12m/s [45] so that higher velocities still lead to the maximum power output.

a reliable basis to identify periods of potentially high
and low wind speeds associated with strong and weak

synoptic-scale pressure gradients, respectively.

We identify continuous intervals of the wind time se-
ries where velocities are below v < 4 m/s because most
wind turbines start generating power at this wind speed
[45] and classify them as periods with low wind, see
Fig. 1 panel a for an illustration of the procedure and
a comparison between aggregated (panel b) and per-
sistence statistics (panel c¢). Analogously, we record
the duration of intervals of constant high-wind veloc-
ities v > 12 m/s as a typical value of the rated wind
speed [45]. While some locations, such as Alpha Ventus
(Fig. 1b) have a high average wind velocity, the cho-
sen thresholds are based on the rated power of typical
wind turbines [45]. Since locations with an abundance
of wind return a small number of persistent events with
v < 4 m/s, we mainly analyze low-wind speed statistics
for low-wind locations (e.g. continental regions) and
high-wind speed statistics for high-wind locations (e.g.
offshore wind farms). Complementary analysis is shown
in Supplementary Note 2. Altering the time resolution
or introducing a maximum cut-off wind speed has little

influence on the statistics (Supplementary Note 6).

Intuitively, persistence statistics should follow an ex-
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ponential distribution. It arises naturally if the events
that cross the threshold, e.g. of v < 4 m/s, follow a
Poisson process [51-53]. In this case, the statistics of
the waiting time or persistence d are described by the

probability density function

p(d|Ae) = Ae exp(—Aed), (1)
for a fixed exponential decay constant A., which may

assume different values as we discuss below.

When analyzing persistence statistics, the tails of the
distribution are of special interest, because they deter-
mine the likelihood of extreme events. We use the kur-
tosis k, the normalized 4th moment of the distribution
as a measure of how heavy-tailed the data are [54], see
Methods for a formal definition of the kurtosis. An ex-
ponential distribution has a kurtosis of Kexp = 9 such

that a larger value x > 9 indicates heavy tails.

Do wind persistence statistics follow a simple expo-
nential distribution or do they display heavy tails? In-
deed, analyzing the downscaled ERA-Interim data re-
veals heavy tails, i.e. many locations in Europe display
a kurtosis much larger than 9, see Fig. 2. The strongest
heavy tails in terms of kurtosis are observed for the

statistics of low-wind states in the countries around the
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Figure 2. European wind persistence statistics are heavy-tailed for low- and high-wind velocities. The kurtosis
of the persistence statistics for low-wind (a) and high-wind (b) states is shown. A kurtosis of 30 or greater is depicted as
white. If the data were following an exponential distribution, the kurtosis should be k = 9 so that a kurtosis above this value
indicates heavy tails. We show the persistence statistics for two specific locations: c¢: Harthaeuser Wald is analysed for low-wind
velocities v < 4 m/s, while d: Alpha Ventus is used for high-wind velocity analysis v > 12 m/s. All analysis is based on the
downscaled ERA-Interim data from 1980-2010 [44]. The blue curves give the data and the red curves depict the most-likely
exponential fits. In both cases, the exponential fit underestimates the tails of the distribution, which crucially determine the
extreme event statistics. Maps were created using Python 2.7.12: https://www.python.org/.

Mediterranean sea. In particular, this includes most 177 Africa.
parts of the Iberian Peninsula, Southern France, Italy,

large parts of the Balkan, Greece and parts of Northern 7 Investigating individual locations, we find that the

17e  persistence statistics of low or high-wind is not well-
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approximated by exponential distributions, see Fig. 2

(¢)-(d).

nential distribution at a representative on-shore loca-

A maximum likelihood estimate for an expo-

tion far from the coast (the wind farm Harthaeuser
Wald, German: "Harth&user Wald", in South-Western
Germany) strongly underestimates the likelihood of
very long durations. Similarly, the likelihood of very
long high-wind situations is underestimated for a typ-
ical off-shore location (the wind farm Alpha Ventus in
the North Sea). Interestingly, the low-wind periods at
Harthaeuser Wald are much shorter than the high-wind
periods at Alpha Ventus. We generally observe this
trend of high-wind periods persisting longer than low-
wind periods also at other locations, see Supplementary
Note 2. Further analysis of different locations in Eu-
rope including a map indicating their position is given
in Supplementary Note 1. The pronounced tails can be
interpreted as a consequence of long-range correlations
in the time series, leading to high wind states being fol-
lowed by further high wind states, see also [41, 55] and

Supplementary Note 7 for a correlation analysis.

We conclude that a refined statistical analysis is nec-

essary to capture the tails of the persistence statistics.

Superstatistics

Wind persistence statistics do not follow exponen-
tial distributions but require a refined statistical de-
scription. To appropriately describe the observed heavy
tails, we consider g-exponentials as a generalization of
exponential distributions [57, 58]. These generalized ¢-
distributions have recently been used to describe wait-
ing times in rainfall statistics [59], non-Gaussian diffu-
sion processes [60] or fluctuations in the frequency of
the power grid [61]. g-exponentials are characterized
by a g-parameter that determines the tails of the distri-
bution and indicates heavy tails for ¢ > 1. In addition,

a shape parameter )\, gives the decay rate so that the
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probability density reads [62]

pdAg) = 2= DAL= (1= A d] 77, (2)

which becomes an exponential in the limit ¢ — 1. The

kurtosis of g-exponential distributions is given as

- _g+ 81 N 1 N 8
TP T 30—-25g ¢g—2  4g—5

3)

and allows for arbitrarily large values, as it diverges at
q= g = 1.2 [38], see also Supplementary Note 4 for an

illustration.

Analyzing the persistence statistics, we indeed ob-
serve that g-exponentials are a better fit to the data
than exponentials, see Fig. 3 for low-wind states of
several locations in Europe. High-wind states dis-
play similar statistics (Supplementary Note 2) and g¢-
exponentials are a better fit to the data than exponen-
tials, based on likelihood analysis (Supplementary Note
6). An important property of g-exponentials is that for

q > 1 and large arguments, the distribution follows a

power law with exponent 1/(1 — ¢):

p(d) ~ dﬁ, as d — oo. (4)
Hence, in particular the tails, i.e., the essential extreme

event statistics, are well-captured using g-exponentials.

Next, we exploit that g-exponentials are not an arbi-
trary distribution with heavy tails but allow a deeper
insight into the system’s statistical properties, using su-
perstatistics [57, 58|.

Suppose our data consists of samples drawn from
different exponential distributions with different decay
constants \.. If the decay constants A\, are distributed
following a x2-distribution g(\.), then the integral

)= [ T 0p(dAdA, (5)

yields a g-exponential distribution (2). That is, super-

imposing multiple exponentials leads to g-exponentials,
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Figure 3. Distributions are not strictly exponential but better described by ¢-exponentials for low-wind. Wind
persistence statistics (blue) is shown with the most-likely exponential (red) and g-exponential distributions (orange) for 9
selected locations, based on the downscaled ERA-Interim data [44]. The g-values are determined by using the kurtosis of the
data, see eq. (10) in Methods. Note that the maximum g-value derived this way is gmax = 1.2. We report the uncertainty of ¢
as a single standard deviation, determined via bootstrapping, see Methods. See also Supplementary Note 1 for a map of the

locations.

if the constants A\, are distributed accordingly. Notably,
the exact distribution of the decay constants A, is of
minor importance for g-values close to one. Hence, the
g-exponential estimates reported in Fig. 3 arise generi-

cally for any sharply peaked distribution g()\.) [57, 58|.

Can the observed g-exponentials in the wind persis-
tence be explained using superstatistics? The wind data
was recorded under very different atmospheric condi-
tions, for example certain parts were recorded during

a strong western circulation, while other periods were

258

259

260

261

recorded during a large scale blocking situation over
Europe. To understand the observed persistence statis-
tics as a superposition of individual distributions, we
disaggregate the data into chunks with approximately
homogeneous atmospheric conditions. In particular,
we classify the large-scale atmospheric conditions ac-
cording to a circulation weather type (CWT) approach
[63]. CWTs describe the characteristics of the near-
surface flow in terms of direction and intensity based

on mean sea level pressure (MSLP) field around a ref-



264

265

266

267

271

272

273

Alpha Ventus v = 12 m/s

—_ @ £=0.0-2.35 ®)  f_g24a864 (O r=1241-13.01
s 10° 3= o101, Aq = 0.094 < =0.045, A, = 0.048 <= 0.031, Aq = 0.029
9 -I_‘ q = 0.939+0.06 q =1.022+0.047 q = 0.909+0.108
C
[O]
g Q |1 —— data
O 10! 4 '\I.ﬂ — exp
o . \
s q B g-exp
o)
E N A
2 100 1 T | 'r_ - T r—1' H [ T T T —
20 40 50 100 50 100 150
Duration v = 12 m/s [hours]
(d) 10° Alpha Ventus

_ Ae = 0.038, Aq = 0.054

—;)- q= 1.143+0.018 ()

ol —— data 25

E’ 102 E — exp 20!

3 g-exp

3 —— super-exp u 15

> 10" 4 % 40

()

£ 5/

5

=2

100 4 \ ’J-|- I|_| = O: \|'
200 200 500 002 004 006 008
Duration v = 12 m/s [hours] Exponential A

Figure 4. Persistence statistics approximately follows exponentials for homogeneous pressure. High-wind velocity
statistics v > 12 m/s are analyzed for Alpha Ventus, based on the downscaled ERA-Interim data [44], conditioning the statistics
on small bins of homogeneous f-parameters (in units of hPa per 1000 km). (a)-(c) Plotting both the most-likely exponential
and g-exponential distributions for small, conditioned subsets, we notice that the g-exponential distributions are very close
to the exponential ones. The g-value is determined by using the kurtosis of the data, see Eq (3). Note that the maximum
g-value derived this way is gmax = 1.2. On average, the g-value is closer to 1 than in the unconditioned Fig. 3. (d) Combining
the independent exponential distributions into one super-exponential approximates the g-exponential distribution. (e) The
histogram of the individual \. parameters is approximated by a log-normal distribution, a typical distribution often seen in
superstatistics. We report the uncertainty of g as a single standard deviation, determined via bootstrapping, see Methods. See
also Supplementary Note 4 for detailed discussion and analysis of Harthaeuser Wald.

erence point [63]. For our study we use MSLP data 27 reference point, and can thus be used as a proxy for the
from ERA-Interim and the reference point is located in 275 large-scale geostrophic wind (see Methods for details).
Central Europe at 10°East and 50°North (near Frank- 276 Typical values for the f-parameter for Central Europe
furt/Main). For this domain, the CWT directions are =27z are5 to 50 hPa/1000km, see [64] and Methods. Notably,
classified either as one of the eight cardinal and inter- 27s assigning instantaneous weather types via f-parameters
cardinal directions (North, North-East, East, ...) or a 27 and CWT directions, allows a dynamical description of
cyclonic/anti-cyclonic CWT, neglecting mixtures of cy- 280 the synoptic state. Using this approach, we decompose
clonic and directional CWTs. The strength of the flow is 281 the data based on the dominant CWT direction or the
quantified using the f-parameter, which estimates the 22 f-parameter. Alternatively, we simply use the different

gradient of the instantaneous MSLP field around the 2s3 recording years.



284

285

286

290

291

202

203

1.2

Full data T
1.1

Full Poissorrr

g-Value

09 i l

0.8

Data: Year Data: f-parameter  Poisson

Figure 5. Data subsets with homogeneous pressure
approximate Poissonian statistics. High-wind velocity
persistence statistics, v > 12 m/s, is analyzed at Alpha Ven-
tus, based on the downscaled ERA-Interim data from 1980-
2010 [44]. Three different data sets are compared: First,
the original data, consisting of 31 years of measurements is
split into 31 equally sized data sets, based on the year it
was recorded (Data: Year). Alternatively, the data is split
based on approximately homogeneous f-parameter (Data:
f-parameter). Finally, this is compared to an artificial Pois-
sonian process with return times as estimated from the ex-
ponential distribution, generating an equal number of data
points (Poisson). The g-values of the full sets are indicated
by colored lines at the sides, both for the real data as well as
the Poissonian process. The full data g-value is larger than
the g-values of most subsets. Furthermore, splitting the
data arbitrarily according to calendar years leads to more
values at large ¢ than if the data is conditioned on the f-
parameter. Conditioning on the f-parameter approximates
the Poisson distribution much better than yearly condition-
ing, when computing the Wasserstein distance [56] of the
distributions. The box plot gives the median as a black line,
the 25% to 75% quartile as a yellow box and minimum and
maximum value as the whiskers.

Indeed, disaggregating the data into small chunks of
coherent f-parameters, leads to a lower kurtosis in the
individual chunks and therefore better approximations
by exponentials, see Fig. 4 (a)-(c). Hence, for a given f-
parameter, the waiting process is better approximated
by a Poisson process than it was when using measure-
ments from the full period of interest. We also quantify
this statement further by comparing the result to an
alternative decomposition based on the recording year
and to a plain Poisson distribution (Fig. 5). The dis-
tribution conditioned on the f-parameter has a smaller
Wasserstein distance [56] to any of the 1000 randomly
drawn Poissonian realizations than the distribution con-
ditioned on the recording year. Furthermore, disaggre-

gating the data according to the flow direction of the
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CWTs instead of the f-parameters does not reproduce
the g-exponential equally well, see Supplementary Note
4. These surprising results will be examined in more
detail in the synoptic section below.

As a consistency check of the superstatistical ap-
proach, we explicitly carry out the superposition of
the individual exponential distributions found for dif-
ferent f-parameters, see Fig. 4 (d). Superposition and
g-exponential agree very well for the persistence of high-
wind situations at the off-shore wind farm Alpha Ven-
tus. The agreement is not as good for low-wind sit-
uations at Harthaeuser Wald, where the superposition
only partly explains the shape of the distribution. Fi-
nally, the A\, distribution approximately follows a log-
normal distribution, a commonly observed distribution
in superstatistics [57, 58], see Fig. 4 (e).

We conclude that the heavy-tailedness of the full per-
sistence statistics is at least partly explained as a result
of the superposition process. Hence, the results sup-
port the idea of g-exponentials arising from a superposi-
tion of different conditioned distributions and highlight
the importance of large-scale atmospheric conditions.
Next, we investigate whether the persistence of aggre-
gated wind power generation can also be described in

terms of g-exponentials.

Power generation

Not only the wind velocities, but also wind power
generation time series exhibit extremely long periods of
persistent low or high values. To show this, we ana-
lyze aggregated wind power generation time series doc-
umented in the renewables.ninja dataset v.1.1 obtained
for the period 1980-2016 [65], see Fig. 6. This analy-
sis has three benefits: It directly discusses wind power
instead of wind velocity, which have an approximately
fixed relationship P ~ v3 [45]. Thereby, our statistical

analysis becomes more applicable to the energy sector.

Secondly, we consider wind power generation of whole
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Figure 6. European wind power generation persistence statistics are heavy-tailed. European maps are shown with
wind power generation data aggregated per country, based on the renewables.ninja data [65]. An output is classified as high in
panels (a) and (c) if it is above the 75th quantile and as low in panels (b) and (d) if it is below the 25th quantile. Panels (a)
and (b) give the kurtosis of the power persistence statistics. In addition, the g-parameter is computed based on eq. (3) and
displayed in panels (c¢) and (d). A high kurtosis consequently implies large g-values. Dark colors indicate a high kurtosis or
g-value respectively. Note that ¢ = 1.2 is the maximum g¢-value, while we only plot the kurtosis up to 24. Heavy tails and high
g-parameters are especially prevalent for low power output and around the Mediterranean. This analysis used aggregated data
of off- and onshore wind generation per country. Distinguishing does not change the heavy tails significantly, see Supplementary
Note 3. Maps were created using Wolfram Mathematica 11: https://www.wolfram.com/mathematica/.

countries instead of single locations and therefore refer
to the importance of high- and low-wind power out-
put in entire power systems. Furthermore, we verify
early results by using the independent renewables.ninja

dataset.
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As before, the duration d of periods, where the
generation is constantly lower or higher than a refer-
ence value, is recorded. Specifically, for each country
all generation above the 75th quantile is classified as

high power and generation below the 25th quantile as
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low power. Again, we observe heavy-tailed distribu-
tions, i.e., a kurtosis higher than the expected value of
k(exp) = 9 both for periods of high power generation
(panels (a) and (c)), as well as for low power generation
(panels (b) and (d)). These observations are connected
to the superstatistical approach by computing the ¢-
parameter using eq. (3) and solving for q.

The Balkan, the Mediterranean, UK and Scandinavia
show particularly heavy tails for low power genera-
tion, leading to the highest g-values, i.e., the most pro-
nounced power laws in low-wind generation persistence
statistics. Therefore, periods without wind generation
have to be expected to last longer than based on a sim-
ple Poissonian statistics. Interestingly, Italy and Ireland
display no heavy tails for high-power generation. We fi-
nally note that the observed g¢-values are very similar
to the ones recorded for the wind velocity persistence
statistics based on the downscaled ERA-Interim data
set (comparing Fig. 3 and Fig. 6).

Concluding, we also observe heavy tails in the wind
power generation on a country-scale. Therefore, ex-
treme events such as long periods with low wind speeds
have to be considered when dimensioning energy storage
and storage needs are likely to be higher than based on
simple exponential estimates, see also Supplementary

Note 8. We proceed with a synoptic view on these long

waiting times.

Synoptic analysis

Disaggregating the data using the f-parameters, a
proxy for the pressure gradient (Fig. 4), approxi-
mates the superstatistical g-exponentials, while a sep-
aration of the data according to the flow direction of
the CWTs does not reproduce the shape of the per-
sistence distributions (Supplementary Note 4). This
can be attributed to the intermittency of the atmo-
spheric flow [66, 67] and indicates that both, prolonged

calms and strong-wind situations do occur for differ-
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ent and non-stationary CWTs in contrast to the naive
expectation that high-wind periods occur solely for
westerly CW'Ts and low-wind-periods solely for anti-
cyclonic CWTs. Furthermore, high-wind periods may
be distinctly longer than low-wind periods, based on
the analysis of duration distributions shown in Fig. 3
and Supplementary Note 2. This seems unexpected, as
surface cyclones, which are associated with high wind
speeds, usually pass Europe within only a few days due
to their typical propagation velocity [68], while atmo-
spheric blocking events, which may cause long-lasting
calms, can have a lifetime of up to several weeks [69].
We perform a synoptic analysis of selected high- and

low-wind periods to examine these findings.

Analyzing the downscaled ERA-Interim data set, all
high-wind periods at Alpha Ventus that persist for more
than 100 hours occur in the winter half year (October to
March), except from one event (September 2004). On
the other hand, low-wind periods at Harthaeuser Wald
of 100 hours and more arise throughout the year. Hence,
for the analysis we simply select the three longest pe-
riods of the high-wind situations at Alpha Ventus (re-
ferred to as HP1, HP2, and HP3), while for Harthaeuser
Wald we choose the two most persistent low-wind sit-
uations (both in winter) and the longest period that
occurred in summer (LP1, LP2, and LP3). The precise
periods are noted in the Methods.

HP1 and HP3 display similar synoptic patterns, char-
acterized by a pronounced mid-tropospheric trough over
the North Atlantic and strong mean sea level pressure
gradients over Western Europe (see Fig. 7). Accord-
ingly, both periods are dominated by south-westerly
CWTs (including some mixed classes). Snapshots at
instantaneous points in time of HP1 reveal that a recur-
rent trough over the North Atlantic is existent through-
out this period, though its amplitude varies (see Sup-
plementary Note 5). Due to the trough, various strong
and quasi-stationary surface steering cyclones develop

between Iceland and the UK, with core pressures of
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Figure 7. High-wind periods are associated with different CWTs. The three columns illustrate the large scale at-
mospheric conditions as obtained by ERA-Interim during three extremely long high-wind periods: (a,d) HP1 in November-
December 2006, (b,e) HP2 in October 1983 and (c,f) HP3 in January-February 1990. The contours show the average mean sea
level pressure (MSLP) in hPa while the shading shows the 500 hPa geopotential height in meters (upper row, a-c), and the
standard deviation of MSLP (lower row, d-e), respectively. The magenta dot shows the location of Alpha Ventus. Maps were

created using Python 2.7.12: https://www.python.org/.
partly below 960 hPa. Hence, Alpha Ventus is con-
tinuously at the foreside of a rotating low pressure field
(Fig. 7a and 7c¢), which is reflected by the moderate
standard deviations in the MSLP fields over Western
Europe and the UK (Fig. 7d and 7f). Snapshots for HP3
show similar pressure patterns (not shown). A different
picture is revealed for HP2, which is characterized by a
zonal mid-tropospheric flow, with Alpha Ventus being
located at the southern flank of a stretched band of low
surface pressure, with extended high pressure further
south (Fig. 7b). The high standard deviation in the
MSLP field near the UK (Fig. 7e) suggests that sev-
eral synoptic systems (i.e. primarily lows) pass over the
British Isles towards Northern Europe within the pe-
riod. Snapshots indicate that the cyclones rapidly mi-
grate along a north-easterly track towards Scandinavia
(Supplementary Note 5). As a result, Alpha Ventus is

permanently in the sphere of influence of alternating
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surface lows and highs during HP2, whereat the pres-
sure gradients remain strong. In this case, nearly half of
the CWTs detected in HP2 are anti-cyclonic, otherwise
westerly but also northerly CWTs occur. A common
characteristic of the three high-wind periods analyzed

here is the clustering of strong surface cyclones [70].

Low-wind situations, i.e., long calms, are similarly
associated with predominantly but not exclusively an-
ticyclone weather types, see Fig. 8. For example, the
summer event LP1 (Fig. 8a) exhibits a strong Azores
High and extended ridge towards Central Europe. Ac-
cordingly, pressure gradients are weak at Harthaeuser
Wald. A standard deviation of nearly zero suggests
that the high pressure conditions are very stable and
persist for the majority of the period (Fig. 8d). An
atmospheric blocking over Central Europe is present
during LP2 (Fig. 8b). The associated stable surface

high exhibits very weak gradients near Harthaeuser
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Figure 8. Low-wind periods are associated with different CWTs. The three columns illustrate the large scale atmo-
spheric conditions as obtained by ERA-Interim during three extremely long low-wind periods: (a,d) LP1 in August 2008, (b,e)
LP2 in November-December 1991 and (c,f) LP3 in December 1989-January 1990. The contours show the average MSLP in hPa
while the shading shows the 500hPa geopotential height in meter (upper row, a~c), and the standard deviation of MSLP (lower
row, d-e), respectively. The magenta dot shows the location of Harthaeuser Wald. Maps were created using Python 2.7.12:
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Wald. The standard deviation of the MSLP field
is low (Fig. 8e¢) and aside from anti-cyclonic mainly
mixed anti-cyclonic/southerly CWTs occur in the pe-
riod. During LP3, cold upper-level air lies over Eastern
Europe (Fig. 8c). Below, a cold high pressure centre
forms at the surface, which persists for several days.
As Harthaeuser Wald is located at the western flank
of the cold high, LP3 is dominated by southerly and
anti-cyclonic CWTs. Again, pressure gradients and the

standard deviation are low at Harthaeuser Wald (8f),

hence conditions for a long low-wind period are fulfilled.

In summary, situations with persistent high or low
wind speed conditions are not necessarily linked to re-
curring individual CWTs, which might be an explana-
tion for our finding that superstatistics regarding the
direction of the CWTs is not straightforward and pro-

vides mixed results.
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DISCUSSION

In a fully renewable power system, the operation of
storage, backup and sector coupling technologies will
be crucially determined by periods of both low and
high power feed-in by renewable generators [22, 27, 71].
Long, persistent periods of extreme wind output are
especially problematic, as most scenarios of highly re-
newable power systems use a high share of wind energy
[9, 72]. Complementary, long periods with high wind
velocities determine how large back-up battery options
or Power-to-Gas storage have to be dimensioned to not
waste wind electricity [30]. Here, we have analyzed
the persistence (waiting time) statistics of wind power,
highlighting several interesting statistical observations.

Persistence statistics of wind velocities and wind
power generation do not follow exponential distribu-

tions as intuitively expected [52], but display heavy tails
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(Fig. 2).

output and periods of low-wind power output occur

Therefore, long periods of high-wind power

more often than based on simple Poissonian statistics.

While not perfect, a better description of the wind
persistence statistics is found in g-exponentials (Fig. 3),
which are based on superstatistics, enjoying recent at-
tention in time series analysis [59-61]. We have revealed
a superposition of several, atmospheric conditions as
a potential mechanism giving rise to g-exponentials,
in particularly when conditioning with respect to the
f-parameter. The so derived g¢-exponentials allow a
deeper insight into the underlying local dynamics than
for example stretched exponentials would [73, 74]. Mod-
eling wind persistence statistics as g-exponentials does
not only provide a good fit but also reveals a scaling
law for the heavy tails, based on the g-value, going
beyond previous investigations [40]. Furthermore, our
findings imply that the extreme event statistics of wind
is governed by Fréchet distributions, instead of Gumbel
statistics [62], altering risk estimates, see e.g. [75] for
a detailed discussion. This is particularly remarkable
as our finding could change an often used paradigm of
extreme value statistics in wind engineering [76]. En-
ergy storage capacities grow substantially when includ-
ing the observed heavy tails in the analysis (Supple-
mentary Note 8). Hence, future research on storage
dimensioning should include our statistical findings to
save costs due to failures caused by too small back-up

systems.

Not only wind velocity persistence statistics are
heavy-tailed but also wind power generation persistence
statistics are. In particular, the duration of periods
with low-wind power generation displays heavy tails.
This demonstrates that our analysis is robustly appli-
cable to countries as well as to individual locations and
to different data sets. Using European (Fig. 6) and in

the future global data allows us to identify regions with

particularly high risk of extremely long waiting times.

Our results are based on the well-established ERA-
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Interim reanalysis dataset [44, 49, 50], downscaled us-
ing the established RC4 regional model. Alternative
regional models are expected to yield the same re-
sults, based on previous comparisons of regional models
[50, 77].

A synoptic analysis revealed that long low-wind pe-
riods are typically associated with very stable synoptic
patterns such as blocking but also atmospheric ridges.
In contrast, the synoptic conditions can be much more
dynamic during high-wind periods, i.e., the instanta-
neous weather type changes over time. A clustering of
surface cyclones led to high-wind periods lasting longer
than three weeks, thus more persistent than the ob-
served low-wind periods. The direction of the large scale
geostrophic wind changed during both low- and high-
wind situations, particularly for the latter, such that
considering the persistence of a single CWT in terms of
its direction is not a suitable predictor for the duration

of a low or high-wind period.

Concluding, we emphasize the role of persistence
(waiting time) statistics when analyzing wind statistics,
in particular based on its role for future energy systems.
The presented superstatistical approach offers a new
perspective on how to analyze wind data and a coher-
ent framework to understand wind persistence statistics
as a superposition of homogeneous wind and weather
conditions. In particular, scaling of heavy tails and ex-
treme event statistics are quantitatively determined by
g-exponential distributions, which should be helpful for
forecasts of extreme weather events or in dimensioning
backup options in future energy systems, complement-
ing existing analysis [78, 79]. We also complement the
observations of g-exponential distributions of wind tur-
bulence [80] by investigating spatially large scale sys-
tems (European continent) and longer time scales.

However, many open questions remain. The emer-
gence of heavy tails was modelled by using superposi-
tioned f-parameters. If the time series of a given loca-

tion were sufficiently long, the data could be split both
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for homogeneous f-parameter and individual CWT di-
rections. The analysis could also be re-done for groups
of related CWTs. Furthermore, frequency and per-
sistence of CWTs may be affected by climate change,
which is projected to change the temporal statistics of
wind power generation [29, 35, 64]. While the current
analysis focused on Europe, future work should consider
other regions in the mid-latitudes to observe global scale
atmospheric patterns influencing wind velocities and lo-
cal CWTs. Furthermore, the extreme value statistics

studied here could also be applied to waiting times of

extreme wind gusts on longer time periods.

Finally, our results already show that not only av-
erage wind velocities or their increments but additional
meteorologic information, such as dynamically changing
CWT directions and f-parameters, have to be included
when analyzing wind statistics, and should be used in

energy system analysis and design [43].

MATERIAL & METHODS

Computing wind speed at turbines

The downscaled ERA-Interim data provides a fine
grid over Europe with wind speeds at 10 meters above
the ground. Since the hub height of wind turbines
is typically around 100 meters above ground [49], the
near-surface wind velocities have to be extrapolated to
a higher altitude. Assuming wind velocities increase al-
gebraically with height [81], we use the following power

law formula of the wind speed v(z) at height z:

1/7
b)

(6)

v(2) = vz, (2/20)

with zp = 10 m [44] and z = 100 m.
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Kurtosis and fitting ¢-exp

Given M measurements of the quantity x; with p
and o being the mean and standard deviation of the
distribution, respectively, the kurtosis is given as the

normalized 4th moment by

M 4
1 xp — p
K= — .

Contrary to some notations of the kurtosis as "peaked-

(7)

ness", the kurtosis should be seen as a measure for the
heavy tails of a distribution [54]. Some studies may ap-
ply the excess kurtosis, which is obtained by subtracting
the kurtosis of a Gaussian distribution Kgauss = 3,

(®)

KExcess = K — 3.

For the exponential distribution, the kurtosis is given

as

9)

Kexp = 9.
A kurtosis higher than nine, £ > 9, points to heavy

tails, i.e., increased likelihood of very large values.

To re-iterate, the kurtosis of g-exponentials is given

by

9+ 81 N 1 N 8
Kg-exp =— — .
TP s T 30-25¢g  ¢—2  4¢—5

(10)

Searching for an adequate description of the recorded
wind persistence statistics, we compute the best-fitting
g-exponential distribution as follows. First, we compute
the kurtosis and then determine the value of the result-
ing ¢ via Eq. (10). Next, we perform a maximum likeli-
hood analysis to find the most likely value for A\,. This
ensures that especially the tails of the distributions are
fitted accordingly, as the g-parameter determines the

power-law scaling of the g-exponential.
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Assigning weather conditions

To determine the circulation weather type (CWT),
ERA-Interim data [44] of the atmospheric conditions
over Europe were considered. Specifically, instanta-
neous daily mean sea level pressure (MSLP) fields
around a reference point in Central Europe (10°East
and 50°North near Frankfurt/Main, Germany) were
used. The CWT classes consist of eight directional
weather types (e.g. 'North’, ’South-West’, "West’, etc.)
and two rotational weather types (’Cyclonic’ or ’Anti-
cyclonic’), depending on the dominant part of the flow.
Of special interest for the current analysis is the f-
parameter, which estimates the gradient of the instan-

taneous MSLP field at the reference point:

() (%)

with % and % being the zonal and meridional pres-
Yy

(11)

sure gradients, respectively. This parameter can thus
be used as a proxy for the large-scale geostrophic wind:
Large f-parameters indicate higher pressure gradients,
and thus typically higher wind speeds, see [35, 64, 82]

for details.

While the downscaled ERA-Interim data set uses a
3-hour resolution for the wind speed [47], the avail-
able weather data [64] assigns one f-parameter and one
CWT per day. Hence, we assume the weather type and
f-parameter to be identical for all 3-hour intervals dur-

ing one day, when comparing with the wind speed.

Typically, low- and high-wind episodes endure several
days and may feature more than one (typically related)
CWTs. This means that a high-wind situation can
include multiple days with potentially different CWT
or f-parameters. In these cases, we use the dominant

CWT (using the first occurring one in cases of ties) and

compute the average f-parameter of the period.
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Superstatistics
The following formula illustrates how a superposition

of ordinary exponentials, given a y2-distribution of the

exponents, leads to a g-exponential:

/0 IO =

where

o= r (il) { (4 fll)/ﬁo }711 el {_ﬁ}

is the y?-distribution, with Gamma function I'. In the

general statistical mechanics formalism, E is the energy and
B a fluctuating inverse temperature parameter [57, 58, 62].
For our application to persistence statistics, we identify £ =

dand B = Ae.

Artificial Poissonian

Let us explain the procedure leading to Fig. 5 in more
detail. The downscaled ERA-Interim data at Alpha Ventus
for the 31 years consists of 90584 velocity measurements. To
generate artificial data, we first approximate the persistence
statistics of these wind data with an exponential distribu-
tion, see Fig. 2. Then, we simulate a Poisson process with
a rate given as the estimated exponential decay rate and a
total of 90584 data points are generated to have an equal
number of artificial and real "measurements". Next, the
real data is split into 31 evenly sized data packages. First,
the separation is done based on that each package has an
approximately homogeneous f-parameter. Since some f-
parameters are more likely to occur, the intervals of the f-
parameters are not homogeneous. As an alternative, we split
the data based on the year of recording the data. Finally,
the artificial Poissonian data is also split into 31 packages.

For all packages, we compute the persistence statistics and

the kurtosis and g-value thereof.
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Uncertainties of parameters

To estimate the uncertainty of our stochastic estimates,
we make use of bootstrapping [83, 84]: Given a number of
measurements (21,2, ..., Ln,, ), in our case duration values,
we can compute stochastic quantities such as the kurto-
sis or perform exponential fits. Instead of doing this only
once for the full data set using each values only once, we
draw randomly N, entries from our measurements, allow-
ing for duplicates. With this new set of measurements
(%1, Z2, ..., TN,, ) we again compute the kurtosis, find the best
exponential fit etc. This procedure is repeated N, times so
that we obtain a mean kurtosis and a mean exponential fit
but also a standard deviation of the kurtosis estimate and
so on. The uncertainties of the g-values are all included
explicitly in the figures. Overall, the relative errors are
of the following order: AXg ~ 1 — 2%, AN\, ~ 2 — 8%,

Ak~ Ag~2—5%.

Selecting persistent events for synoptic analysis

When performing the synoptic analysis, we chose the fol-
lowing high pressure (HP) and low pressure (LP) events:
For Alpha Ventus the periods are 13 November to 08 De-
cember 2006 (609 hours: HP1), 10 October to 28 October
1983 (435 hours; HP2), and 29 January to 16 February 1990
(432 hours; HP3). For Harthaeuser Wald we selected the
periods 21 August to 30 August 2008 (210 hours; LP1), 25
November to 05 December 1991 (255 hours; LP2), and 29
December 1989 to 07 January 1990 (237 hours; LP3).
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