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Mitigating climate change demands a transition towards renewable electricity generation, with12

wind power being a particularly promising technology. Long periods either of high or of low wind13

therefore essentially define the necessary amount of storage to balance the power system. While14

the general statistics of wind velocities have been studied extensively, persistence (waiting) time15

statistics of wind is far from well understood. Here, we investigate the statistics of both high- and16

low-wind persistence. We find heavy tails and explain them as a superposition of different wind17

conditions, requiring q-exponential distributions instead of exponential distributions. Persistent18

wind conditions are not necessarily caused by stationary atmospheric circulation patterns nor by19

recurring individual weather types but may emerge as a combination of multiple weather types20

and circulation patterns. This also leads to Fréchet instead of Gumbel extreme value statistics.21

Understanding wind persistence statistically and synoptically may help to ensure a reliable and22

economically feasible future energy system, which uses a high share of wind generation.23

INTRODUCTION24

The 2°C target of the Paris agreement [1] requires a25

rapid decarbonization of the energy sector [2, 3]. The26

most promising technologies to reach this goal are wind27

and solar power generation, which have shown a re-28

markable development in the last decade [4–7], paving29

the way to a fully renewable energy supply [8, 9]. How-30

ever, integrating the specifically important wind power31

generators [9] into the power system comes with a large32

challenge: Wind power generation is strongly modu-33

lated by weather conditions and thus strongly fluctuates34

on time scales from seconds to weeks or even decades35
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† b.schaefer@qmul.ac.uk

[10–13].36

A variety of technical measures is currently being de-37

veloped to cope with these fluctuations in the power38

system. Virtual inertia [14], batteries [15–17], or smart39

grid applications [18, 19] might balance the grid for40

seconds, minutes or a few hours. For time periods of41

many minutes or several hours, pumped hydro storage42

is capable of providing back-up power [20]. However, it43

remains unclear how to act when low wind conditions44

persist for several days or weeks.45

Long periods characterized by a persistent and46

quasi-stationary blocking high pressure weather system47

(which may endure several weeks) lead to sustained48

low-wind velocities and thus constitute extreme weather49

events [21], posing a substantial challenge to the oper-50

ation of highly renewable power systems. During these51
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periods, the power demand must be entirely satisfied by52

other renewable generators, backup power plants [22] or53

long-term electricity storage, which is not yet available54

at that scale [23]. Not the average power output of wind55

farms, but the extreme event statistics is essential when56

dimensioning the necessary backup options [9, 24–26].57

It is assumed that these extreme events without renew-58

able generation occur rarely, but a clear quantitative59

understanding is missing.60

In addition, periods with continuously high-wind61

power generation have also striking impacts on elec-62

tricity grids and markets. A high-wind power feed-63

in already led to negative electricity prices [27] and64

lead to transmission grid congestion [28, 29]. In future65

highly renewable energy systems, these high-wind peri-66

ods determine the potential for new applications such as67

Power-to-Heat or Power-to-Gas [30] or the occurrence of68

surplus electricity and the need of curtailment [31–33].69

Again, the question arises: How long can these periods70

last and how likely do they occur?71

To answer these questions, we need to investigate and72

understand the statistics of long periods with very low73

or very high power generation by wind [22]. While the74

statistics of wind velocities [34, 35], its increment statis-75

tics [36–38] and the associated power generation [13, 39]76

have been explored extensively, the persistence of wind77

[40, 41] and its extreme event statistics [42] are less78

studied and far from well understood.79

In this article, we investigate the persistence (wait-80

ing time) statistics of low- and high-wind situations81

in Europe. We thus analyze the duration of periods82

where wind velocities v constantly stay below or above83

a certain limiting value. The study is carried out for84

various locations in Europe and complemented with an85

analysis of aggregated power generation for individual86

countries and a detailed synoptic analysis. We mainly87

focus on the statistical analysis of the wind data and88

its interconnection with the synoptic system. Overall,89

we demonstrate how non-standard statistics are neces-90

sary to describe waiting time persistence distributions.91

Further, we argue that dynamical large-scale weather92

conditions [43] contribute to local persistence statistics.93

This might impact future energy modelling by requiring94

additional storage capacity.95

RESULTS96

Wind persistence statistics97

Extreme wind conditions represent a major challenge98

for the operation of future highly renewable power sys-99

tems. The aggregated wind velocity statistics follow a100

well-known Weibull distribution [34, 46], which can be101

used to derive the probability for situations with low102

and high-wind power generation, see Fig. 1a. In con-103

trast, much less attention has been paid towards the104

temporal patterns of wind. Especially the probability105

of long durations with low-wind power are of central106

importance to assess the reliability of renewable power107

systems and to plan necessary backup infrastructures108

[9, 22, 35].109

Here, we analyze the persistence statistics of wind110

velocities and wind power using publicly available wind111

data sets provided by the EURO-CORDEX consortium112

[47] with high temporal and spatial resolution. In par-113

ticular, we use wind speeds from the ERA-Interim Re-114

analysis data set [44] which is downscaled to a high spa-115

tial and temporal resolution using the regional model116

RCA4 [48]. The wind velocity time series covers a117

grid all over Europe for a time frame of 31 years from118

1980-2010 with 3-hour time resolution. The simula-119

tions have a horizontal resolution of 0.11°, such that120

local orographic effects and the impact of large-scale121

atmospheric dynamics are captured realistically. ERA-122

Interim Reanalysis are widely used as boundary condi-123

tions for EURO-CORDEX regional climate model sim-124

ulations, also for wind energy applications, see e.g.125

[49, 50]. We therefore conclude that this data set forms126
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Figure 1. Extracting wind persistence statistics from trajectory data. a: The downscaled ERA-Interim data at Alpha
Ventus [44] provide a trajectory of wind velocities with a 3-hour resolution. b: The aggregated wind velocities approximately
follow a Weibull distribution. The blue curve reports the recorded data and the red curve depicts the most-likely Weibull
distribution, with shape parameter α ≈ 2.36 and scale parameter β ≈ 9.66. c: If the wind velocity drops below a threshold
of v = 4 m/s (dashed red line in panel a), we count the full period until it crosses the threshold again as low-wind duration
and gather these events for our persistence statistics. For high-wind speeds, we analogously employ an upper threshold of
v = 12 m/s (not shown). Note that the plots and thresholds use the velocity scaled up from 10 m to a typical hub height of
100 m, using a power law, see Methods for details. While the mean velocity in panel (b) is close to the upper threshold, we
note that here we are using data from an offshore wind farm location, with typically high wind velocities. Most wind turbines
reach their rated power at v = 12m/s [45] so that higher velocities still lead to the maximum power output.

a reliable basis to identify periods of potentially high127

and low wind speeds associated with strong and weak128

synoptic-scale pressure gradients, respectively.129

We identify continuous intervals of the wind time se-130

ries where velocities are below v < 4 m/s because most131

wind turbines start generating power at this wind speed132

[45] and classify them as periods with low wind, see133

Fig. 1 panel a for an illustration of the procedure and134

a comparison between aggregated (panel b) and per-135

sistence statistics (panel c). Analogously, we record136

the duration of intervals of constant high-wind veloc-137

ities v ≥ 12 m/s as a typical value of the rated wind138

speed [45]. While some locations, such as Alpha Ventus139

(Fig. 1b) have a high average wind velocity, the cho-140

sen thresholds are based on the rated power of typical141

wind turbines [45]. Since locations with an abundance142

of wind return a small number of persistent events with143

v < 4 m/s, we mainly analyze low-wind speed statistics144

for low-wind locations (e.g. continental regions) and145

high-wind speed statistics for high-wind locations (e.g.146

offshore wind farms). Complementary analysis is shown147

in Supplementary Note 2. Altering the time resolution148

or introducing a maximum cut-off wind speed has little149

influence on the statistics (Supplementary Note 6).150

Intuitively, persistence statistics should follow an ex-151

ponential distribution. It arises naturally if the events152

that cross the threshold, e.g. of v < 4 m/s, follow a153

Poisson process [51–53]. In this case, the statistics of154

the waiting time or persistence d are described by the155

probability density function156

p(d|λe) = λe exp(−λed), (1)

for a fixed exponential decay constant λe, which may157

assume different values as we discuss below.158

When analyzing persistence statistics, the tails of the159

distribution are of special interest, because they deter-160

mine the likelihood of extreme events. We use the kur-161

tosis κ, the normalized 4th moment of the distribution162

as a measure of how heavy-tailed the data are [54], see163

Methods for a formal definition of the kurtosis. An ex-164

ponential distribution has a kurtosis of κexp = 9 such165

that a larger value κ > 9 indicates heavy tails.166

Do wind persistence statistics follow a simple expo-167

nential distribution or do they display heavy tails? In-168

deed, analyzing the downscaled ERA-Interim data re-169

veals heavy tails, i.e. many locations in Europe display170

a kurtosis much larger than 9, see Fig. 2. The strongest171

heavy tails in terms of kurtosis are observed for the172

statistics of low-wind states in the countries around the173
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Figure 2. European wind persistence statistics are heavy-tailed for low- and high-wind velocities. The kurtosis
of the persistence statistics for low-wind (a) and high-wind (b) states is shown. A kurtosis of 30 or greater is depicted as
white. If the data were following an exponential distribution, the kurtosis should be κ = 9 so that a kurtosis above this value
indicates heavy tails. We show the persistence statistics for two specific locations: c: Harthaeuser Wald is analysed for low-wind
velocities v < 4 m/s, while d: Alpha Ventus is used for high-wind velocity analysis v ≥ 12 m/s. All analysis is based on the
downscaled ERA-Interim data from 1980-2010 [44]. The blue curves give the data and the red curves depict the most-likely
exponential fits. In both cases, the exponential fit underestimates the tails of the distribution, which crucially determine the
extreme event statistics. Maps were created using Python 2.7.12: https://www.python.org/.

Mediterranean sea. In particular, this includes most174

parts of the Iberian Peninsula, Southern France, Italy,175

large parts of the Balkan, Greece and parts of Northern176

Africa.177

Investigating individual locations, we find that the178

persistence statistics of low or high-wind is not well-179
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approximated by exponential distributions, see Fig. 2180

(c)-(d). A maximum likelihood estimate for an expo-181

nential distribution at a representative on-shore loca-182

tion far from the coast (the wind farm Harthaeuser183

Wald, German: "Harthäuser Wald", in South-Western184

Germany) strongly underestimates the likelihood of185

very long durations. Similarly, the likelihood of very186

long high-wind situations is underestimated for a typ-187

ical off-shore location (the wind farm Alpha Ventus in188

the North Sea). Interestingly, the low-wind periods at189

Harthaeuser Wald are much shorter than the high-wind190

periods at Alpha Ventus. We generally observe this191

trend of high-wind periods persisting longer than low-192

wind periods also at other locations, see Supplementary193

Note 2. Further analysis of different locations in Eu-194

rope including a map indicating their position is given195

in Supplementary Note 1. The pronounced tails can be196

interpreted as a consequence of long-range correlations197

in the time series, leading to high wind states being fol-198

lowed by further high wind states, see also [41, 55] and199

Supplementary Note 7 for a correlation analysis.200

We conclude that a refined statistical analysis is nec-201

essary to capture the tails of the persistence statistics.202

Superstatistics203

Wind persistence statistics do not follow exponen-204

tial distributions but require a refined statistical de-205

scription. To appropriately describe the observed heavy206

tails, we consider q-exponentials as a generalization of207

exponential distributions [57, 58]. These generalized q-208

distributions have recently been used to describe wait-209

ing times in rainfall statistics [59], non-Gaussian diffu-210

sion processes [60] or fluctuations in the frequency of211

the power grid [61]. q-exponentials are characterized212

by a q-parameter that determines the tails of the distri-213

bution and indicates heavy tails for q > 1. In addition,214

a shape parameter λq gives the decay rate so that the215

probability density reads [62]216

p(d|λq) = (2− q)λq [1− (1− q)λqd]
1

1−q , (2)

which becomes an exponential in the limit q → 1. The217

kurtosis of q-exponential distributions is given as218

κq-exp =
9

5
+

81

30− 25q
+

1

q − 2
+

8

4q − 5
(3)

and allows for arbitrarily large values, as it diverges at219

q = 6
5 = 1.2 [38], see also Supplementary Note 4 for an220

illustration.221

Analyzing the persistence statistics, we indeed ob-222

serve that q-exponentials are a better fit to the data223

than exponentials, see Fig. 3 for low-wind states of224

several locations in Europe. High-wind states dis-225

play similar statistics (Supplementary Note 2) and q-226

exponentials are a better fit to the data than exponen-227

tials, based on likelihood analysis (Supplementary Note228

6). An important property of q-exponentials is that for229

q > 1 and large arguments, the distribution follows a230

power law with exponent 1/(1− q):231

p(d) ∼ d
1

1−q , as d→∞. (4)

Hence, in particular the tails, i.e., the essential extreme232

event statistics, are well-captured using q-exponentials.233

Next, we exploit that q-exponentials are not an arbi-234

trary distribution with heavy tails but allow a deeper235

insight into the system’s statistical properties, using su-236

perstatistics [57, 58].237

Suppose our data consists of samples drawn from238

different exponential distributions with different decay239

constants λe. If the decay constants λe are distributed240

following a χ2-distribution g(λe), then the integral241

p(d) =

∫ ∞
0

g(λe)p(d|λe)dλe (5)

yields a q-exponential distribution (2). That is, super-242

imposing multiple exponentials leads to q-exponentials,243
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Figure 3. Distributions are not strictly exponential but better described by q-exponentials for low-wind. Wind
persistence statistics (blue) is shown with the most-likely exponential (red) and q-exponential distributions (orange) for 9
selected locations, based on the downscaled ERA-Interim data [44]. The q-values are determined by using the kurtosis of the
data, see eq. (10) in Methods. Note that the maximum q-value derived this way is qmax = 1.2. We report the uncertainty of q
as a single standard deviation, determined via bootstrapping, see Methods. See also Supplementary Note 1 for a map of the
locations.

if the constants λe are distributed accordingly. Notably,244

the exact distribution of the decay constants λe is of245

minor importance for q-values close to one. Hence, the246

q-exponential estimates reported in Fig. 3 arise generi-247

cally for any sharply peaked distribution g(λe) [57, 58].248

Can the observed q-exponentials in the wind persis-249

tence be explained using superstatistics? The wind data250

was recorded under very different atmospheric condi-251

tions, for example certain parts were recorded during252

a strong western circulation, while other periods were253

recorded during a large scale blocking situation over254

Europe. To understand the observed persistence statis-255

tics as a superposition of individual distributions, we256

disaggregate the data into chunks with approximately257

homogeneous atmospheric conditions. In particular,258

we classify the large-scale atmospheric conditions ac-259

cording to a circulation weather type (CWT) approach260

[63]. CWTs describe the characteristics of the near-261

surface flow in terms of direction and intensity based262

on mean sea level pressure (MSLP) field around a ref-263
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Figure 4. Persistence statistics approximately follows exponentials for homogeneous pressure. High-wind velocity
statistics v > 12 m/s are analyzed for Alpha Ventus, based on the downscaled ERA-Interim data [44], conditioning the statistics
on small bins of homogeneous f -parameters (in units of hPa per 1000 km). (a)-(c) Plotting both the most-likely exponential
and q-exponential distributions for small, conditioned subsets, we notice that the q-exponential distributions are very close
to the exponential ones. The q-value is determined by using the kurtosis of the data, see Eq (3). Note that the maximum
q-value derived this way is qmax = 1.2. On average, the q-value is closer to 1 than in the unconditioned Fig. 3. (d) Combining
the independent exponential distributions into one super-exponential approximates the q-exponential distribution. (e) The
histogram of the individual λe parameters is approximated by a log-normal distribution, a typical distribution often seen in
superstatistics. We report the uncertainty of q as a single standard deviation, determined via bootstrapping, see Methods. See
also Supplementary Note 4 for detailed discussion and analysis of Harthaeuser Wald.

erence point [63]. For our study we use MSLP data264

from ERA-Interim and the reference point is located in265

Central Europe at 10°East and 50°North (near Frank-266

furt/Main). For this domain, the CWT directions are267

classified either as one of the eight cardinal and inter-268

cardinal directions (North, North-East, East, ...) or a269

cyclonic/anti-cyclonic CWT, neglecting mixtures of cy-270

clonic and directional CWTs. The strength of the flow is271

quantified using the f -parameter, which estimates the272

gradient of the instantaneous MSLP field around the273

reference point, and can thus be used as a proxy for the274

large-scale geostrophic wind (see Methods for details).275

Typical values for the f -parameter for Central Europe276

are 5 to 50 hPa/1000km, see [64] and Methods. Notably,277

assigning instantaneous weather types via f -parameters278

and CWT directions, allows a dynamical description of279

the synoptic state. Using this approach, we decompose280

the data based on the dominant CWT direction or the281

f -parameter. Alternatively, we simply use the different282

recording years.283
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Figure 5. Data subsets with homogeneous pressure
approximate Poissonian statistics. High-wind velocity
persistence statistics, v ≥ 12 m/s, is analyzed at Alpha Ven-
tus, based on the downscaled ERA-Interim data from 1980-
2010 [44]. Three different data sets are compared: First,
the original data, consisting of 31 years of measurements is
split into 31 equally sized data sets, based on the year it
was recorded (Data: Year). Alternatively, the data is split
based on approximately homogeneous f -parameter (Data:
f -parameter). Finally, this is compared to an artificial Pois-
sonian process with return times as estimated from the ex-
ponential distribution, generating an equal number of data
points (Poisson). The q-values of the full sets are indicated
by colored lines at the sides, both for the real data as well as
the Poissonian process. The full data q-value is larger than
the q-values of most subsets. Furthermore, splitting the
data arbitrarily according to calendar years leads to more
values at large q than if the data is conditioned on the f -
parameter. Conditioning on the f -parameter approximates
the Poisson distribution much better than yearly condition-
ing, when computing the Wasserstein distance [56] of the
distributions. The box plot gives the median as a black line,
the 25% to 75% quartile as a yellow box and minimum and
maximum value as the whiskers.

Indeed, disaggregating the data into small chunks of284

coherent f -parameters, leads to a lower kurtosis in the285

individual chunks and therefore better approximations286

by exponentials, see Fig. 4 (a)-(c). Hence, for a given f -287

parameter, the waiting process is better approximated288

by a Poisson process than it was when using measure-289

ments from the full period of interest. We also quantify290

this statement further by comparing the result to an291

alternative decomposition based on the recording year292

and to a plain Poisson distribution (Fig. 5). The dis-293

tribution conditioned on the f -parameter has a smaller294

Wasserstein distance [56] to any of the 1000 randomly295

drawn Poissonian realizations than the distribution con-296

ditioned on the recording year. Furthermore, disaggre-297

gating the data according to the flow direction of the298

CWTs instead of the f -parameters does not reproduce299

the q-exponential equally well, see Supplementary Note300

4. These surprising results will be examined in more301

detail in the synoptic section below.302

As a consistency check of the superstatistical ap-303

proach, we explicitly carry out the superposition of304

the individual exponential distributions found for dif-305

ferent f -parameters, see Fig. 4 (d). Superposition and306

q-exponential agree very well for the persistence of high-307

wind situations at the off-shore wind farm Alpha Ven-308

tus. The agreement is not as good for low-wind sit-309

uations at Harthaeuser Wald, where the superposition310

only partly explains the shape of the distribution. Fi-311

nally, the λe distribution approximately follows a log-312

normal distribution, a commonly observed distribution313

in superstatistics [57, 58], see Fig. 4 (e).314

We conclude that the heavy-tailedness of the full per-315

sistence statistics is at least partly explained as a result316

of the superposition process. Hence, the results sup-317

port the idea of q-exponentials arising from a superposi-318

tion of different conditioned distributions and highlight319

the importance of large-scale atmospheric conditions.320

Next, we investigate whether the persistence of aggre-321

gated wind power generation can also be described in322

terms of q-exponentials.323

Power generation324

Not only the wind velocities, but also wind power325

generation time series exhibit extremely long periods of326

persistent low or high values. To show this, we ana-327

lyze aggregated wind power generation time series doc-328

umented in the renewables.ninja dataset v.1.1 obtained329

for the period 1980-2016 [65], see Fig. 6. This analy-330

sis has three benefits: It directly discusses wind power331

instead of wind velocity, which have an approximately332

fixed relationship P ∼ v3 [45]. Thereby, our statistical333

analysis becomes more applicable to the energy sector.334

Secondly, we consider wind power generation of whole335
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Figure 6. European wind power generation persistence statistics are heavy-tailed. European maps are shown with
wind power generation data aggregated per country, based on the renewables.ninja data [65]. An output is classified as high in
panels (a) and (c) if it is above the 75th quantile and as low in panels (b) and (d) if it is below the 25th quantile. Panels (a)
and (b) give the kurtosis of the power persistence statistics. In addition, the q-parameter is computed based on eq. (3) and
displayed in panels (c) and (d). A high kurtosis consequently implies large q-values. Dark colors indicate a high kurtosis or
q-value respectively. Note that q = 1.2 is the maximum q-value, while we only plot the kurtosis up to 24. Heavy tails and high
q-parameters are especially prevalent for low power output and around the Mediterranean. This analysis used aggregated data
of off- and onshore wind generation per country. Distinguishing does not change the heavy tails significantly, see Supplementary
Note 3. Maps were created using Wolfram Mathematica 11: https://www.wolfram.com/mathematica/.

countries instead of single locations and therefore refer336

to the importance of high- and low-wind power out-337

put in entire power systems. Furthermore, we verify338

early results by using the independent renewables.ninja339

dataset.340

As before, the duration d of periods, where the341

generation is constantly lower or higher than a refer-342

ence value, is recorded. Specifically, for each country343

all generation above the 75th quantile is classified as344

high power and generation below the 25th quantile as345
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low power. Again, we observe heavy-tailed distribu-346

tions, i.e., a kurtosis higher than the expected value of347

κ(exp) = 9 both for periods of high power generation348

(panels (a) and (c)), as well as for low power generation349

(panels (b) and (d)). These observations are connected350

to the superstatistical approach by computing the q-351

parameter using eq. (3) and solving for q.352

The Balkan, the Mediterranean, UK and Scandinavia353

show particularly heavy tails for low power genera-354

tion, leading to the highest q-values, i.e., the most pro-355

nounced power laws in low-wind generation persistence356

statistics. Therefore, periods without wind generation357

have to be expected to last longer than based on a sim-358

ple Poissonian statistics. Interestingly, Italy and Ireland359

display no heavy tails for high-power generation. We fi-360

nally note that the observed q-values are very similar361

to the ones recorded for the wind velocity persistence362

statistics based on the downscaled ERA-Interim data363

set (comparing Fig. 3 and Fig. 6).364

Concluding, we also observe heavy tails in the wind365

power generation on a country-scale. Therefore, ex-366

treme events such as long periods with low wind speeds367

have to be considered when dimensioning energy storage368

and storage needs are likely to be higher than based on369

simple exponential estimates, see also Supplementary370

Note 8. We proceed with a synoptic view on these long371

waiting times.372

Synoptic analysis373

Disaggregating the data using the f -parameters, a374

proxy for the pressure gradient (Fig. 4), approxi-375

mates the superstatistical q-exponentials, while a sep-376

aration of the data according to the flow direction of377

the CWTs does not reproduce the shape of the per-378

sistence distributions (Supplementary Note 4). This379

can be attributed to the intermittency of the atmo-380

spheric flow [66, 67] and indicates that both, prolonged381

calms and strong-wind situations do occur for differ-382

ent and non-stationary CWTs in contrast to the naive383

expectation that high-wind periods occur solely for384

westerly CWTs and low-wind-periods solely for anti-385

cyclonic CWTs. Furthermore, high-wind periods may386

be distinctly longer than low-wind periods, based on387

the analysis of duration distributions shown in Fig. 3388

and Supplementary Note 2. This seems unexpected, as389

surface cyclones, which are associated with high wind390

speeds, usually pass Europe within only a few days due391

to their typical propagation velocity [68], while atmo-392

spheric blocking events, which may cause long-lasting393

calms, can have a lifetime of up to several weeks [69].394

We perform a synoptic analysis of selected high- and395

low-wind periods to examine these findings.396

Analyzing the downscaled ERA-Interim data set, all397

high-wind periods at Alpha Ventus that persist for more398

than 100 hours occur in the winter half year (October to399

March), except from one event (September 2004). On400

the other hand, low-wind periods at Harthaeuser Wald401

of 100 hours and more arise throughout the year. Hence,402

for the analysis we simply select the three longest pe-403

riods of the high-wind situations at Alpha Ventus (re-404

ferred to as HP1, HP2, and HP3), while for Harthaeuser405

Wald we choose the two most persistent low-wind sit-406

uations (both in winter) and the longest period that407

occurred in summer (LP1, LP2, and LP3). The precise408

periods are noted in the Methods.409

HP1 and HP3 display similar synoptic patterns, char-410

acterized by a pronounced mid-tropospheric trough over411

the North Atlantic and strong mean sea level pressure412

gradients over Western Europe (see Fig. 7). Accord-413

ingly, both periods are dominated by south-westerly414

CWTs (including some mixed classes). Snapshots at415

instantaneous points in time of HP1 reveal that a recur-416

rent trough over the North Atlantic is existent through-417

out this period, though its amplitude varies (see Sup-418

plementary Note 5). Due to the trough, various strong419

and quasi-stationary surface steering cyclones develop420

between Iceland and the UK, with core pressures of421
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HP1 HP2 HP3

Figure 7. High-wind periods are associated with different CWTs. The three columns illustrate the large scale at-
mospheric conditions as obtained by ERA-Interim during three extremely long high-wind periods: (a,d) HP1 in November-
December 2006, (b,e) HP2 in October 1983 and (c,f) HP3 in January-February 1990. The contours show the average mean sea
level pressure (MSLP) in hPa while the shading shows the 500 hPa geopotential height in meters (upper row, a-c), and the
standard deviation of MSLP (lower row, d-e), respectively. The magenta dot shows the location of Alpha Ventus. Maps were
created using Python 2.7.12: https://www.python.org/.

partly below 960 hPa. Hence, Alpha Ventus is con-422

tinuously at the foreside of a rotating low pressure field423

(Fig. 7a and 7c), which is reflected by the moderate424

standard deviations in the MSLP fields over Western425

Europe and the UK (Fig. 7d and 7f). Snapshots for HP3426

show similar pressure patterns (not shown). A different427

picture is revealed for HP2, which is characterized by a428

zonal mid-tropospheric flow, with Alpha Ventus being429

located at the southern flank of a stretched band of low430

surface pressure, with extended high pressure further431

south (Fig. 7b). The high standard deviation in the432

MSLP field near the UK (Fig. 7e) suggests that sev-433

eral synoptic systems (i.e. primarily lows) pass over the434

British Isles towards Northern Europe within the pe-435

riod. Snapshots indicate that the cyclones rapidly mi-436

grate along a north-easterly track towards Scandinavia437

(Supplementary Note 5). As a result, Alpha Ventus is438

permanently in the sphere of influence of alternating439

surface lows and highs during HP2, whereat the pres-440

sure gradients remain strong. In this case, nearly half of441

the CWTs detected in HP2 are anti-cyclonic, otherwise442

westerly but also northerly CWTs occur. A common443

characteristic of the three high-wind periods analyzed444

here is the clustering of strong surface cyclones [70].445

Low-wind situations, i.e., long calms, are similarly446

associated with predominantly but not exclusively an-447

ticyclone weather types, see Fig. 8. For example, the448

summer event LP1 (Fig. 8a) exhibits a strong Azores449

High and extended ridge towards Central Europe. Ac-450

cordingly, pressure gradients are weak at Harthaeuser451

Wald. A standard deviation of nearly zero suggests452

that the high pressure conditions are very stable and453

persist for the majority of the period (Fig. 8d). An454

atmospheric blocking over Central Europe is present455

during LP2 (Fig. 8b). The associated stable surface456

high exhibits very weak gradients near Harthaeuser457
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LP1 LP2 LP3

Figure 8. Low-wind periods are associated with different CWTs. The three columns illustrate the large scale atmo-
spheric conditions as obtained by ERA-Interim during three extremely long low-wind periods: (a,d) LP1 in August 2008, (b,e)
LP2 in November-December 1991 and (c,f) LP3 in December 1989-January 1990. The contours show the average MSLP in hPa
while the shading shows the 500hPa geopotential height in meter (upper row, a-c), and the standard deviation of MSLP (lower
row, d-e), respectively. The magenta dot shows the location of Harthaeuser Wald. Maps were created using Python 2.7.12:
https://www.python.org/.

Wald. The standard deviation of the MSLP field458

is low (Fig. 8e) and aside from anti-cyclonic mainly459

mixed anti-cyclonic/southerly CWTs occur in the pe-460

riod. During LP3, cold upper-level air lies over Eastern461

Europe (Fig. 8c). Below, a cold high pressure centre462

forms at the surface, which persists for several days.463

As Harthaeuser Wald is located at the western flank464

of the cold high, LP3 is dominated by southerly and465

anti-cyclonic CWTs. Again, pressure gradients and the466

standard deviation are low at Harthaeuser Wald (8f),467

hence conditions for a long low-wind period are fulfilled.468

In summary, situations with persistent high or low469

wind speed conditions are not necessarily linked to re-470

curring individual CWTs, which might be an explana-471

tion for our finding that superstatistics regarding the472

direction of the CWTs is not straightforward and pro-473

vides mixed results.474

DISCUSSION475

In a fully renewable power system, the operation of476

storage, backup and sector coupling technologies will477

be crucially determined by periods of both low and478

high power feed-in by renewable generators [22, 27, 71].479

Long, persistent periods of extreme wind output are480

especially problematic, as most scenarios of highly re-481

newable power systems use a high share of wind energy482

[9, 72]. Complementary, long periods with high wind483

velocities determine how large back-up battery options484

or Power-to-Gas storage have to be dimensioned to not485

waste wind electricity [30]. Here, we have analyzed486

the persistence (waiting time) statistics of wind power,487

highlighting several interesting statistical observations.488

Persistence statistics of wind velocities and wind489

power generation do not follow exponential distribu-490

tions as intuitively expected [52], but display heavy tails491
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(Fig. 2). Therefore, long periods of high-wind power492

output and periods of low-wind power output occur493

more often than based on simple Poissonian statistics.494

While not perfect, a better description of the wind495

persistence statistics is found in q-exponentials (Fig. 3),496

which are based on superstatistics, enjoying recent at-497

tention in time series analysis [59–61]. We have revealed498

a superposition of several, atmospheric conditions as499

a potential mechanism giving rise to q-exponentials,500

in particularly when conditioning with respect to the501

f -parameter. The so derived q-exponentials allow a502

deeper insight into the underlying local dynamics than503

for example stretched exponentials would [73, 74]. Mod-504

eling wind persistence statistics as q-exponentials does505

not only provide a good fit but also reveals a scaling506

law for the heavy tails, based on the q-value, going507

beyond previous investigations [40]. Furthermore, our508

findings imply that the extreme event statistics of wind509

is governed by Fréchet distributions, instead of Gumbel510

statistics [62], altering risk estimates, see e.g. [75] for511

a detailed discussion. This is particularly remarkable512

as our finding could change an often used paradigm of513

extreme value statistics in wind engineering [76]. En-514

ergy storage capacities grow substantially when includ-515

ing the observed heavy tails in the analysis (Supple-516

mentary Note 8). Hence, future research on storage517

dimensioning should include our statistical findings to518

save costs due to failures caused by too small back-up519

systems.520

Not only wind velocity persistence statistics are521

heavy-tailed but also wind power generation persistence522

statistics are. In particular, the duration of periods523

with low-wind power generation displays heavy tails.524

This demonstrates that our analysis is robustly appli-525

cable to countries as well as to individual locations and526

to different data sets. Using European (Fig. 6) and in527

the future global data allows us to identify regions with528

particularly high risk of extremely long waiting times.529

Our results are based on the well-established ERA-530

Interim reanalysis dataset [44, 49, 50], downscaled us-531

ing the established RC4 regional model. Alternative532

regional models are expected to yield the same re-533

sults, based on previous comparisons of regional models534

[50, 77].535

A synoptic analysis revealed that long low-wind pe-536

riods are typically associated with very stable synoptic537

patterns such as blocking but also atmospheric ridges.538

In contrast, the synoptic conditions can be much more539

dynamic during high-wind periods, i.e., the instanta-540

neous weather type changes over time. A clustering of541

surface cyclones led to high-wind periods lasting longer542

than three weeks, thus more persistent than the ob-543

served low-wind periods. The direction of the large scale544

geostrophic wind changed during both low- and high-545

wind situations, particularly for the latter, such that546

considering the persistence of a single CWT in terms of547

its direction is not a suitable predictor for the duration548

of a low or high-wind period.549

Concluding, we emphasize the role of persistence550

(waiting time) statistics when analyzing wind statistics,551

in particular based on its role for future energy systems.552

The presented superstatistical approach offers a new553

perspective on how to analyze wind data and a coher-554

ent framework to understand wind persistence statistics555

as a superposition of homogeneous wind and weather556

conditions. In particular, scaling of heavy tails and ex-557

treme event statistics are quantitatively determined by558

q-exponential distributions, which should be helpful for559

forecasts of extreme weather events or in dimensioning560

backup options in future energy systems, complement-561

ing existing analysis [78, 79]. We also complement the562

observations of q-exponential distributions of wind tur-563

bulence [80] by investigating spatially large scale sys-564

tems (European continent) and longer time scales.565

However, many open questions remain. The emer-566

gence of heavy tails was modelled by using superposi-567

tioned f -parameters. If the time series of a given loca-568

tion were sufficiently long, the data could be split both569
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for homogeneous f -parameter and individual CWT di-570

rections. The analysis could also be re-done for groups571

of related CWTs. Furthermore, frequency and per-572

sistence of CWTs may be affected by climate change,573

which is projected to change the temporal statistics of574

wind power generation [29, 35, 64]. While the current575

analysis focused on Europe, future work should consider576

other regions in the mid-latitudes to observe global scale577

atmospheric patterns influencing wind velocities and lo-578

cal CWTs. Furthermore, the extreme value statistics579

studied here could also be applied to waiting times of580

extreme wind gusts on longer time periods.581

Finally, our results already show that not only av-582

erage wind velocities or their increments but additional583

meteorologic information, such as dynamically changing584

CWT directions and f -parameters, have to be included585

when analyzing wind statistics, and should be used in586

energy system analysis and design [43].587

MATERIAL & METHODS588

Computing wind speed at turbines589

The downscaled ERA-Interim data provides a fine590

grid over Europe with wind speeds at 10 meters above591

the ground. Since the hub height of wind turbines592

is typically around 100 meters above ground [49], the593

near-surface wind velocities have to be extrapolated to594

a higher altitude. Assuming wind velocities increase al-595

gebraically with height [81], we use the following power596

law formula of the wind speed v(z) at height z:597

v(z) = vz0 (z/z0)
1/7, (6)

with z0 = 10 m [44] and z = 100 m.598

Kurtosis and fitting q-exp599

Given M measurements of the quantity xi with µ600

and σ being the mean and standard deviation of the601

distribution, respectively, the kurtosis is given as the602

normalized 4th moment by603

κ :=
1

M

M∑
i=1

(
xi − µ
σ

)4

. (7)

Contrary to some notations of the kurtosis as "peaked-604

ness", the kurtosis should be seen as a measure for the605

heavy tails of a distribution [54]. Some studies may ap-606

ply the excess kurtosis, which is obtained by subtracting607

the kurtosis of a Gaussian distribution κGauss = 3,608

κExcess = κ− 3. (8)

For the exponential distribution, the kurtosis is given609

as610

κexp = 9. (9)

A kurtosis higher than nine, κ > 9, points to heavy611

tails, i.e., increased likelihood of very large values.612

To re-iterate, the kurtosis of q-exponentials is given613

by614

κq-exp =
9

5
+

81

30− 25q
+

1

q − 2
+

8

4q − 5
. (10)

Searching for an adequate description of the recorded615

wind persistence statistics, we compute the best-fitting616

q-exponential distribution as follows. First, we compute617

the kurtosis and then determine the value of the result-618

ing q via Eq. (10). Next, we perform a maximum likeli-619

hood analysis to find the most likely value for λq. This620

ensures that especially the tails of the distributions are621

fitted accordingly, as the q-parameter determines the622

power-law scaling of the q-exponential.623
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Assigning weather conditions624

To determine the circulation weather type (CWT),625

ERA-Interim data [44] of the atmospheric conditions626

over Europe were considered. Specifically, instanta-627

neous daily mean sea level pressure (MSLP) fields628

around a reference point in Central Europe (10°East629

and 50°North near Frankfurt/Main, Germany) were630

used. The CWT classes consist of eight directional631

weather types (e.g. ’North’, ’South-West’, ’West’, etc.)632

and two rotational weather types (’Cyclonic’ or ’Anti-633

cyclonic’), depending on the dominant part of the flow.634

Of special interest for the current analysis is the f -635

parameter, which estimates the gradient of the instan-636

taneous MSLP field at the reference point:637

f =

√(
∂p

∂x

)2

+

(
∂p

∂y

)2

, (11)

with ∂p
∂x and ∂p

∂y being the zonal and meridional pres-638

sure gradients, respectively. This parameter can thus639

be used as a proxy for the large-scale geostrophic wind:640

Large f -parameters indicate higher pressure gradients,641

and thus typically higher wind speeds, see [35, 64, 82]642

for details.643

While the downscaled ERA-Interim data set uses a644

3-hour resolution for the wind speed [47], the avail-645

able weather data [64] assigns one f -parameter and one646

CWT per day. Hence, we assume the weather type and647

f -parameter to be identical for all 3-hour intervals dur-648

ing one day, when comparing with the wind speed.649

Typically, low- and high-wind episodes endure several650

days and may feature more than one (typically related)651

CWTs. This means that a high-wind situation can652

include multiple days with potentially different CWT653

or f -parameters. In these cases, we use the dominant654

CWT (using the first occurring one in cases of ties) and655

compute the average f -parameter of the period.656

Superstatistics657

The following formula illustrates how a superposition658

of ordinary exponentials, given a χ2-distribution of the659

exponents, leads to a q-exponential:660

∫ ∞
0

dβf(β)e−βE =
1

(1 + (q − 1)β0E)1/(q−1)
,

where661

f(β) =
1

Γ
(

1
q−1

) {
1

(q − 1)β0

} 1
q−1

β
1

q−1
−1

exp

{
− β

(q − 1)β0

}

is the χ2-distribution, with Gamma function Γ. In the662

general statistical mechanics formalism, E is the energy and663

β a fluctuating inverse temperature parameter [57, 58, 62].664

For our application to persistence statistics, we identify E =665

d and β = λe.666

Artificial Poissonian667

Let us explain the procedure leading to Fig. 5 in more668

detail. The downscaled ERA-Interim data at Alpha Ventus669

for the 31 years consists of 90584 velocity measurements. To670

generate artificial data, we first approximate the persistence671

statistics of these wind data with an exponential distribu-672

tion, see Fig. 2. Then, we simulate a Poisson process with673

a rate given as the estimated exponential decay rate and a674

total of 90584 data points are generated to have an equal675

number of artificial and real "measurements". Next, the676

real data is split into 31 evenly sized data packages. First,677

the separation is done based on that each package has an678

approximately homogeneous f -parameter. Since some f -679

parameters are more likely to occur, the intervals of the f -680

parameters are not homogeneous. As an alternative, we split681

the data based on the year of recording the data. Finally,682

the artificial Poissonian data is also split into 31 packages.683

For all packages, we compute the persistence statistics and684

the kurtosis and q-value thereof.685
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Uncertainties of parameters686

To estimate the uncertainty of our stochastic estimates,687

we make use of bootstrapping [83, 84]: Given a number of688

measurements (x1, x2, ..., xNm), in our case duration values,689

we can compute stochastic quantities such as the kurto-690

sis or perform exponential fits. Instead of doing this only691

once for the full data set using each values only once, we692

draw randomly Nm entries from our measurements, allow-693

ing for duplicates. With this new set of measurements694

(x̃1, x̃2, ..., x̃Nm) we again compute the kurtosis, find the best695

exponential fit etc. This procedure is repeated Nb times so696

that we obtain a mean kurtosis and a mean exponential fit697

but also a standard deviation of the kurtosis estimate and698

so on. The uncertainties of the q-values are all included699

explicitly in the figures. Overall, the relative errors are700

of the following order: ∆λE ∼ 1 − 2%, ∆λq ∼ 2 − 8%,701

∆κ ≈ ∆q ∼ 2 − 5%.702

Selecting persistent events for synoptic analysis703

When performing the synoptic analysis, we chose the fol-704

lowing high pressure (HP) and low pressure (LP) events:705

For Alpha Ventus the periods are 13 November to 08 De-706

cember 2006 (609 hours: HP1), 10 October to 28 October707

1983 (435 hours; HP2), and 29 January to 16 February 1990708

(432 hours; HP3). For Harthaeuser Wald we selected the709

periods 21 August to 30 August 2008 (210 hours; LP1), 25710

November to 05 December 1991 (255 hours; LP2), and 29711

December 1989 to 07 January 1990 (237 hours; LP3).712
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