2,605 research outputs found

    Laboratory Constraints on a 33.9 MeV/c^2 Isosinglet Neutrino: Status and Perspectives

    Get PDF
    An anomaly in the time behaviour of the signals observed by the KARMEN Collaboration may be interpreted as the possible decay signature of a 33.9 MeV/c2^2 mainly sterile neutrino. This note discusses the parameter space still open for the mixing of this hypothetical particle with the neutrinos of known leptonic flavour, considering the experimental results which became available recently, as well as those to be expected from forthcoming measurements. It is concluded that if no positive signature is observed, the envisaged laboratory experiments are not expected to close enterily the parameter space of mixing amplitudes. However, a proper reassessment of the ALEPH upper bound on the ντ\nu_\tau neutrino mass including the possibility of τ\tau flavour mixing, would certainly help in reducing the parameter space left open.Comment: LaTeX file, 11 pages, one figure available on reques

    Realizations of Thermal Supersymmetry

    Full text link
    We investigate realizations of supersymmetry at finite temperature in terms of thermal superfields, in a thermally constrained superspace: the Grassmann coordinates are promoted to be time-dependent and antiperiodic, with a period given by the inverse temperature. This approach allows to formulate a Kubo-Martin-Schwinger (KMS) condition at the level of thermal superfield propagators. The latter is proven directly in thermal superspace, and is shown to imply the correct (bosonic and fermionic) KMS conditions for the component fields. In thermal superspace, we formulate thermal covariant derivatives and supercharges and derive the thermal super-Poincar\'e algebra. Finally, we briefly investigate field realizations of this thermal supersymmetry algebra, focussing on the Wess-Zumino model. The thermal superspace formalism is used to characterize the breaking of global supersymmetry at finite temperature.Comment: 27 pages, no figures, LaTeX. Typos corrected and references added. To appear in Nucl. Phys.

    A low power, large dynamic range, CMOS amplifier and analog memory for capacitive sensors

    Get PDF
    This paper has been written to announce the design of a CMOS charge to voltage amplifier and it¹s integration within an analog memory. Together they provide the necessary front end electronics for the CMS electromagnetic calorimeter (ECAL) preshower detector systeAspell,Pm in the LHC experiment foreseen at the CERN particle physics laboratory. The design and measurements of the amplifier realised in a 1.5mm bulk CMOS process as a 16 channel prototype chip are presented. Results show the mean gain and peaking time of = 1.74mV/mip, = 18ns with channel to channel variations; s(peak_voltage) = 8% and s(peak_time) = 6.5%. The dynamic range is shown to be linear over 400mips with an integral non linearity (INL)=0.05mV as expressed in terms of sigma from the mean gain over the 400mip range. The measured noise of the amplifier was ENC=1800+41e/pF with a power consumption of 2.4mW/channel. The amplifier can support extreme levels of leakage current. The gain remains constant for up to 200mA of leakage current. The integration of this amplifier within a 32 channel, 128 cell analog memory chip ³DYNLDR² is then demonstrated. The DYNLDR offers sampling at 40MHz with a storage time of up to 3.2ms. It provides continuous Write/Read access with no dead time. Triggered data is protected within the memory until requested for readout which is performed at 2.5MHz. The memory is designed to have a steerable dc level enabling maximum dynamic range performance. Measurements of the DYNLDR are presented confirming the original amplifier performance. The memory itself has a very low pedestal non uniformity (s(ped)) of 0.9mV and a gain of 10mV/mip

    Approach for Predicting Production Scenarios Focused on Cross Impact Analysis

    Get PDF
    AbstractOne of the most consistent challenges in business is anticipating what the future holds and what impact it may have on current production systems. The scenario technique is a well-established method for developing and forecasting multiple future development paths for companies. However, this method is mostly employed to develop and to support strategic long-term decisions. The core idea of the approach introduced in this paper is to convey the future impact of today's decisions on production systems to employees involved in production planning processes. With the help of immersive visualization, performed in virtual reality (VR) systems, planning participants can perceive how the factory must adapt to fit future demands.In this paper, the focus is on the fourth phase of the scenario technique – so called scenario development – and, in particular, the cross impact analysis. With this methodology, the interrelations, or cross impacts of the different basic elements are determined. The cross impact analysis results serve as a basis for the development of a standardized tool that can be used to create probable production scenarios out of given production systems. This standardized tool will facilitate the usage of the scenario technique for factory planning projects, as it focuses the immense diversity of future uncertainties companies are faced with on the factory level

    Evidence for an Excess of Soft Photons in Hadronic Decays of Z^0

    Full text link
    Soft photons inside hadronic jets converted in front of the DELPHI main tracker (TPC) in events of qqbar disintegrations of the Z^0 were studied in the kinematic range 0.2 < E_gamma < 1 GeV and transverse momentum with respect to the closest jet direction p_T < 80 MeV/c. A clear excess of photons in the experimental data as compared to the Monte Carlo predictions is observed. This excess (uncorrected for the photon detection efficiency) is (1.17 +/- 0.06 +/- 0.27) x 10^{-3} gamma/jet in the specified kinematic region, while the expected level of the inner hadronic bremsstrahlung (which is not included in the Monte Carlo) is (0.340 +/- 0.001 +/- 0.038) x 10^{-3} gamma/jet. The ratio of the excess to the predicted bremsstrahlung rate is then (3.4 +/- 0.2 +/- 0.8), which is similar in strength to the anomalous soft photon signal observed in fixed target experiments with hadronic beams.Comment: 37 pages, 9 figures, Accepted by Eur. Phys. J.

    Reception Test of Petals for the End Cap TEC+ of the CMS Silicon Strip Tracker

    Get PDF
    The silicon strip tracker of the CMS experiment has been completed and was inserted into the CMS detector in late 2007. The largest sub system of the tracker are its end caps, comprising two large end caps (TEC) each containing 3200 silicon strip modules. To ease construction, the end caps feature a modular design: groups of about 20 silicon modules are placed on sub-assemblies called petals and these self-contained elements are then mounted onto the TEC support structures. Each end cap consists of 144 such petals, which were built and fully qualified by several institutes across Europe. Fro

    Integration of the End Cap TEC+ of the CMS Silicon Strip Tracker

    Get PDF
    The silicon strip tracker of the CMS experiment has been completed and inserted into the CMS detector in late 2007. The largest sub-system of the tracker is its end cap system, comprising two large end caps (TEC) each containing 3200 silicon strip modules. To ease construction, the end caps feature a modular design: groups of about 20 silicon modules are placed on sub-assemblies called petals and these self-contained elements are then mounted into the TEC support structures. Each end cap consists of 144 petals, and the insertion of these petals into the end cap structure is referred to as TEC integration. The two end caps were integrated independently in Aachen (TEC+) and at CERN (TEC--). This note deals with the integration of TEC+, describing procedures for end cap integration and for quality control during testing of integrated sections of the end cap and presenting results from the testing

    Guidelines for diagnosis and management of the cobalamin-related remethylation disorders cblC, cblD, cblE, cblF, cblG, cblJ and MTHFR deficiency

    Get PDF
    BACKGROUND: Remethylation defects are rare inherited disorders in which impaired remethylation of homocysteine to methionine leads to accumulation of homocysteine and perturbation of numerous methylation reactions. OBJECTIVE: To summarise clinical and biochemical characteristics of these severe disorders and to provide guidelines on diagnosis and management. DATA SOURCES: Review, evaluation and discussion of the medical literature (Medline, Cochrane databases) by a panel of experts on these rare diseases following the GRADE approach. KEY RECOMMENDATIONS: We strongly recommend measuring plasma total homocysteine in any patient presenting with the combination of neurological and/or visual and/or haematological symptoms, subacute spinal cord degeneration, atypical haemolytic uraemic syndrome or unexplained vascular thrombosis. We strongly recommend to initiate treatment with parenteral hydroxocobalamin without delay in any suspected remethylation disorder; it significantly improves survival and incidence of severe complications. We strongly recommend betaine treatment in individuals with MTHFR deficiency; it improves the outcome and prevents disease when given early
    corecore