10 research outputs found

    Structural damage detection and localization using a hybrid method and artificial intelligence techniques

    Full text link
    © The Author(s) 2019. In this article, an intelligent scheme for structural damage detection and localization is introduced by implementing a hybrid method using the Hilbert–Huang transform and the wavelet transform. First, the second derivatives of the Discrete Laplacian are computed on Hilbert spectrum parameters at each frequency coordinate, and then, in order to highlight the influence of damage on signals, the data are rescaled and weighted with respect to the variance to adjust the differences in amplitude at different scales. Afterwards, the anti-symmetric extension is applied to deal with the boundary distortion phenomenon. A two-dimensional map is created using the multi two-dimensional discrete wavelet transform. This generates the coefficient matrices of level 2 approximation and horizontal, vertical and diagonal details. Horizontal detail coefficients are used to localize damages due to its sensitiveness to any perturbation. Finally, the validity of the algorithm corresponding to various damage states, the single state damage and multiple state damage, is examined through experimental analysis. The results indicate that the proposed framework can effectively localize cracks on concrete and reinforced concrete beams and can provide reliable crack localization in the presence of noise up to 5% more than the expected noise. In addition, the detection problem is mapped to machine learning tasks (support vector machine, k-nearest neighbours and ensemble methods) to automate the damage detection process. The quality of the models is evaluated and validated using the features extracted from the horizontal detail coefficients. The numerical results show that the ensemble models outperform the other models with respect to accuracy, prediction speed and training time

    Episodic Withdrawal Promotes Psychomotor Sensitization to Morphine

    No full text
    The relative intermittency or continuity of drug delivery is a major determinant of addictive liability, and also influences the impact of drug exposure on brain function and behavior. Events that occur during the offset of drug action (ie, acute withdrawal) may have an important role in the consequences of intermittent drug exposure. We assessed whether recurrent episodes of acute withdrawal contribute to the development of psychomotor sensitization in rodents during daily morphine exposure. The acoustic startle reflex—a measure of anxiety induced by opiate withdrawal—was used to resolve and quantify discrete withdrawal episodes, and pharmacological interventions were used to manipulate withdrawal severity. Startle potentiation was observed during spontaneous withdrawal from a single morphine exposure, and individual differences in initial withdrawal severity positively predicted the subsequent development of sensitization. Manipulations that reduce or exacerbate withdrawal severity also produced parallel changes in the degree of sensitization. These results demonstrate that the episodic experience of withdrawal during daily drug exposure has a novel role in promoting the development of psychomotor sensitization—a prominent model of drug-induced neurobehavioral plasticity. Episodic withdrawal may have a pervasive role in many effects of intermittent drug exposure and contribute to the development of addiction

    Living Radical Polymerization by the RAFT Process – A Third Update

    No full text

    RAFT polymerization to form stimuli-responsive polymers

    No full text

    Multicriteria decision making for sustainable development: A systematic review

    No full text
    corecore