330 research outputs found

    A quantitative study of adipokinetic hormone of the firebug, Pyrrhocoris apterus

    Get PDF
    The development of an enzyme-linked immunoassay (ELISA) for the adipokinetic neuropeptide hormone, Pya-AKH, from the firebug Pyrrhocoris apterus L. is described. The ELISA measures as little as 20 fmol of Pya-AKH. Tested against a range of synthetic peptides, the assay has a high sensitivity for peptides containing the C-terminal motif FTPNWamide. The amounts of Pya-AKH in the brain, corpora cardiaca, suboesophageal ganglia, and fused thoracic and abdominal ganglionic mass are very small, with only the corpora cardiaca containing appreciable levels of the hormone (ca. 4 pmol per bug). Preliminary estimates of the persistence of the hormone in the haemolymph are consistent with values determined for AKHs in other insects, and suggest that Pya-AKH has a rapid turnover with a half-life of ca. 18 min. Measurements of circulating titres of AKH in Pyrrhocoris are only possible in the ELISA described here by using pooled samples of haemolymph, and after preliminary clean-up of the haemolymph samples. The titre of Pya-AKH in resting reproductive female Pyrrhocoris is ca. 1 fmol/μl

    Dual Lipolytic Control of Body Fat Storage and Mobilization in Drosophila

    Get PDF
    Energy homeostasis is a fundamental property of animal life, providing a genetically fixed balance between fat storage and mobilization. The importance of body fat regulation is emphasized by dysfunctions resulting in obesity and lipodystrophy in humans. Packaging of storage fat in intracellular lipid droplets, and the various molecules and mechanisms guiding storage-fat mobilization, are conserved between mammals and insects. We generated a Drosophila mutant lacking the receptor (AKHR) of the adipokinetic hormone signaling pathway, an insect lipolytic pathway related to ß-adrenergic signaling in mammals. Combined genetic, physiological, and biochemical analyses provide in vivo evidence that AKHR is as important for chronic accumulation and acute mobilization of storage fat as is the Brummer lipase, the homolog of mammalian adipose triglyceride lipase (ATGL). Simultaneous loss of Brummer and AKHR causes extreme obesity and blocks acute storage-fat mobilization in flies. Our data demonstrate that storage-fat mobilization in the fly is coordinated by two lipocatabolic systems, which are essential to adjust normal body fat content and ensure lifelong fat-storage homeostasis

    Interleukin-11 Is the Dominant IL-6 Family Cytokine during Gastrointestinal Tumorigenesis and Can Be Targeted Therapeutically

    Get PDF
    SummaryAmong the cytokines linked to inflammation-associated cancer, interleukin (IL)-6 drives many of the cancer “hallmarks” through downstream activation of the gp130/STAT3 signaling pathway. However, we show that the related cytokine IL-11 has a stronger correlation with elevated STAT3 activation in human gastrointestinal cancers. Using genetic mouse models, we reveal that IL-11 has a more prominent role compared to IL-6 during the progression of sporadic and inflammation-associated colon and gastric cancers. Accordingly, in these models and in human tumor cell line xenograft models, pharmacologic inhibition of IL-11 signaling alleviated STAT3 activation, suppressed tumor cell proliferation, and reduced the invasive capacity and growth of tumors. Our results identify IL-11 signaling as a potential therapeutic target for the treatment of gastrointestinal cancers

    Neuromodulation of the neural circuits controlling the lower urinary tract

    Get PDF
    The inability to control timely bladder emptying is one of the most serious challenges among the many functional deficits that occur after a spinal cord injury. We previously demonstrated that electrodes placed epidurally on the dorsum of the spinal cord can be used in animals and humans to recover postural and locomotor function after complete paralysis and can be used to enable voiding in spinal rats. In the present study, we examined the neuromodulation of lower urinary tract function associated with acute epidural spinal cord stimulation, locomotion, and peripheral nerve stimulation in adult rats. Herein we demonstrate that electrically evoked potentials in the hindlimb muscles and external urethral sphincter are modulated uniquely when the rat is stepping bipedally and not voiding, immediately pre-voiding, or when voiding. We also show that spinal cord stimulation can effectively neuromodulate the lower urinary tract via frequency-dependent stimulation patterns and that neural peripheral nerve stimulation can activate the external urethral sphincter both directly and via relays in the spinal cord. The data demonstrate that the sensorimotor networks controlling bladder and locomotion are highly integrated neurophysiologically and behaviorally and demonstrate how these two functions are modulated by sensory input from the tibial and pudental nerves. A more detailed understanding of the high level of interaction between these networks could lead to the integration of multiple neurophysiological strategies to improve bladder function. These data suggest that the development of strategies to improve bladder function should simultaneously engage these highly integrated networks in an activity-dependent manner

    Fermi observations of high-energy gamma-ray emission from GRB 080825C

    Full text link
    The Fermi Gamma-ray Space Telescope (FGST) has opened a new high-energy window in the study of Gamma-Ray Bursts (GRBs). Here we present a thorough analysis of GRB 080825C, which triggered the Fermi Gamma-ray Burst Monitor (GBM), and was the first firm detection of a GRB by the Fermi Large Area Telescope (LAT). We discuss the LAT event selections, background estimation, significance calculations, and localization for Fermi GRBs in general and GRB 080825C in particular. We show the results of temporal and time-resolved spectral analysis of the GBM and LAT data. We also present some theoretical interpretation of GRB 080825C observations as well as some common features observed in other LAT GRBs.Comment: 18 pages, 7 figures. Accepted for publication in ApJ. Corresponding authors: A. Bouvier, J. Granot, A.J. van der Hors

    Fermi observations of high-energy gamma-ray emission from GRB 090217A

    Full text link
    The Fermi observatory is advancing our knowledge of Gamma-Ray Bursts (GRBs) through pioneering observations at high energies, covering more than 7 decades in energy with the two on-board detectors, the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). Here we report on the observation of the long GRB 090217A which triggered the GBM and has been detected by the LAT with a significance greater than 9 sigma. We present the GBM and LAT observations and on-ground analyses, including the time-resolved spectra and the study of the temporal profile from 8 keV up to 1 GeV. All spectra are well reproduced by a Band model. We compare these observations to the first two LAT-detected, long bursts GRB 080825C and GRB 080916C. These bursts were found to have time-dependent spectra and exhibited a delayed onset of the high-energy emission, which are not observed in the case of GRB 090217A. We discuss some theoretical implications for the high-energy emission of GRBs.Comment: 17 pages, 4 figures. Contact Authors: Fred, Piron; Sara, Cutini; Andreas, von Kienli

    Swift and Fermi observations of the early afterglow of the short Gamma-Ray Burst 090510

    Full text link
    We present the observations of GRB090510 performed by the Fermi Gamma-Ray Space Telescope and the Swift observatory. This is a bright, short burst that shows an extended emission detected in the GeV range. Furthermore, its optical emission initially rises, a feature so far observed only in long bursts, while the X-ray flux shows an initial shallow decrease, followed by a steeper decay. This exceptional behavior enables us to investigate the physical properties of the GRB outflow, poorly known in short bursts. We discuss internal shock and external shock models for the broadband energy emission of this object.Comment: Comments: Submitted to ApJ Letters. Contact Authors: Massimiliano De Pasquale ([email protected]), Mathew Page ([email protected]), Kenji Toma ([email protected]), Veronique Pelassa ([email protected]). Minor change in the authorlis

    Fermi detection of delayed GeV emission from the short GRB 081024B

    Full text link
    We report on the detailed analysis of the high-energy extended emission from the short Gamma-Ray Burst (GRB) 081024B, detected by the Fermi Gamma-ray Space Telescope. Historically, this represents the first clear detection of temporal extended emission from a short GRB. The light curve observed by the Fermi Gamma-ray Burst Monitor lasts approximately 0.8 seconds whereas the emission in the Fermi Large Area Telescope lasts for about 3 seconds. Evidence of longer lasting high-energy emission associated with long bursts has been already reported by previous experiments. Our observations, together with the earlier reported study of the bright short GRB 090510, indicate similarities in the high-energy emission of short and long GRBs and open the path to new interpretations.Comment: 19 pages, 4 figures, 2 tables. Accepted for publication in Ap

    Drosophila Lipophorin Receptors Mediate the Uptake of Neutral Lipids in Oocytes and Imaginal Disc Cells by an Endocytosis-Independent Mechanism

    Get PDF
    Lipids are constantly shuttled through the body to redistribute energy and metabolites between sites of absorption, storage, and catabolism in a complex homeostatic equilibrium. In Drosophila, lipids are transported through the hemolymph in the form of lipoprotein particles, known as lipophorins. The mechanisms by which cells interact with circulating lipophorins and acquire their lipidic cargo are poorly understood. We have found that lipophorin receptor 1 and 2 (lpr1 and lpr2), two partially redundant genes belonging to the Low Density Lipoprotein Receptor (LDLR) family, are essential for the efficient uptake and accumulation of neutral lipids by oocytes and cells of the imaginal discs. Females lacking the lpr2 gene lay eggs with low lipid content and have reduced fertility, revealing a central role for lpr2 in mediating Drosophila vitellogenesis. lpr1 and lpr2 are transcribed into multiple isoforms. Interestingly, only a subset of these isoforms containing a particular LDLR type A module mediate neutral lipid uptake. Expression of these isoforms induces the extracellular stabilization of lipophorins. Furthermore, our data indicate that endocytosis of the lipophorin receptors is not required to mediate the uptake of neutral lipids. These findings suggest a model where lipophorin receptors promote the extracellular lipolysis of lipophorins. This model is reminiscent of the lipolytic processing of triglyceride-rich lipoproteins that occurs at the mammalian capillary endothelium, suggesting an ancient role for LDLR–like proteins in this process
    corecore