73 research outputs found

    High loading of polygenic risk for ADHD in children with comorbid aggression

    Get PDF
    Objective: Although attention deficit hyperactivity disorder (ADHD) is highly heritable, genome-wide association studies (GWAS) have not yet identified any common genetic variants that contribute to risk. There is evidence that aggression or conduct disorder in children with ADHD indexes higher genetic loading and clinical severity. The authors examine whether common genetic variants considered en masse as polygenic scores for ADHD are especially enriched in children with comorbid conduct disorder. Method: Polygenic scores derived from an ADHD GWAS meta-analysis were calculated in an independent ADHD sample (452 case subjects, 5,081 comparison subjects). Multivariate logistic regression analyses were employed to compare polygenic scores in the ADHD and comparison groups and test for higher scores in ADHD case subjects with comorbid conduct disorder relative to comparison subjects and relative to those without comorbid conduct disorder. Association with symptom scores was tested using linear regression. Results: Polygenic risk for ADD, derived from the meta-analysis, was higher in the independent ADHD group than in the comparison group. Polygenic score was significantly higher in ADHD case subjects with conduct disorder relative to ADHD case subjects without conduct disorder. ADHD polygenic score showed significant association with comorbid conduct disorder symptoms. This relationship was explained by,the aggression items. Conclusions: Common genetic variation is relevant to ADHD, especially in individuals with comorbid aggression. The findings suggest that the previously published ADHD GWAS meta-analysis contains weak but true associations with common variants, support for which falls below genome-wide significance levels. The findings also highlight the fact that aggression in ADHD indexes genetic as well as clinical severity

    New housing association development and its potential to reduce concentrations of deprivation: An English case study

    Get PDF
    Social housing across Western Europe has become significantly more residualised as governments concentrate on helping vulnerable households. Many countries are trying to reduce the concentrations of deprivation by building for a wider range of households and tenures. In England this policy has two main strands: (i) including other tenures when regenerating areas originally built as mono-tenure social housing estates and (ii) introducing social rented and low cost homeownership into new private market developments through planning obligations. By examining where new social housing and low cost home ownership homes have been built and who moves into them, this paper examines whether these policies achieve social mix and reduce spatial concentrations of deprivation. The evidence suggests that new housing association development has enabled some vulnerable households to live in areas which are not deprived, while some better off households have moved into more deprived areas. But these trends have not been sufficient to stem increases in deprivation in the most deprived areas

    Multi-locus genome-wide association analysis supports the role of glutamatergic synaptic transmission in the etiology of major depressive disorder

    Get PDF
    Major depressive disorder (MDD) is a common psychiatric illness characterized by low mood and loss of interest in pleasurable activities. Despite years of effort, recent genome-wide association studies (GWAS) have identified few susceptibility variants or genes that are robustly associated with MDD. Standard single-SNP (single nucleotide polymorphism)-based GWAS analysis typically has limited power to deal with the extensive heterogeneity and substantial polygenic contribution of individually weak genetic effects underlying the pathogenesis of MDD. Here, we report an alternative, gene-set-based association analysis of MDD in an effort to identify groups of biologically related genetic variants that are involved in the same molecular function or cellular processes and exhibit a significant level of aggregated association with MDD. In particular, we used a text-mining-based data analysis to prioritize candidate gene sets implicated in MDD and conducted a multi-locus association analysis to look for enriched signals of nominally associated MDD susceptibility loci within each of the gene sets. Our primary analysis is based on the meta-analysis of three large MDD GWAS data sets (total N = 4346 cases and 4430 controls). After correction for multiple testing, we found that genes involved in glutamatergic synaptic neurotransmission were significantly associated with MDD (set-based association P = 6.9 X 10(-4)). This result is consistent with previous studies that support a role of the glutamatergic system in synaptic plasticity and MDD and support the potential utility of targeting glutamatergic neurotransmission in the treatment of MDD

    Cooperative Genome-Wide Analysis Shows Increased Homozygosity in Early Onset Parkinson's Disease

    Get PDF
    Parkinson's disease (PD) occurs in both familial and sporadic forms, and both monogenic and complex genetic factors have been identified. Early onset PD (EOPD) is particularly associated with autosomal recessive (AR) mutations, and three genes, PARK2, PARK7 and PINK1, have been found to carry mutations leading to AR disease. Since mutations in these genes account for less than 10% of EOPD patients, we hypothesized that further recessive genetic factors are involved in this disorder, which may appear in extended runs of homozygosity

    A Survey of Genomic Studies Supports Association of Circadian Clock Genes with Bipolar Disorder Spectrum Illnesses and Lithium Response

    Get PDF
    Circadian rhythm abnormalities in bipolar disorder (BD) have led to a search for genetic abnormalities in circadian “clock genes” associated with BD. However, no significant clock gene findings have emerged from genome-wide association studies (GWAS). At least three factors could account for this discrepancy: complex traits are polygenic, the organization of the clock is more complex than previously recognized, and/or genetic risk for BD may be shared across multiple illnesses. To investigate these issues, we considered the clock gene network at three levels: essential “core” clock genes, upstream circadian clock modulators, and downstream clock controlled genes. Using relaxed thresholds for GWAS statistical significance, we determined the rates of clock vs. control genetic associations with BD, and four additional illnesses that share clinical features and/or genetic risk with BD (major depression, schizophrenia, attention deficit/hyperactivity). Then we compared the results to a set of lithium-responsive genes. Associations with BD-spectrum illnesses and lithium-responsiveness were both enriched among core clock genes but not among upstream clock modulators. Associations with BD-spectrum illnesses and lithium-responsiveness were also enriched among pervasively rhythmic clock-controlled genes but not among genes that were less pervasively rhythmic or non-rhythmic. Our analysis reveals previously unrecognized associations between clock genes and BD-spectrum illnesses, partly reconciling previously discordant results from past GWAS and candidate gene studies

    Comparative Linkage Meta-Analysis Reveals Regionally-Distinct, Disparate Genetic Architectures: Application to Bipolar Disorder and Schizophrenia

    Get PDF
    New high-throughput, population-based methods and next-generation sequencing capabilities hold great promise in the quest for common and rare variant discovery and in the search for ”missing heritability.” However, the optimal analytic strategies for approaching such data are still actively debated, representing the latest rate-limiting step in genetic progress. Since it is likely a majority of common variants of modest effect have been identified through the application of tagSNP-based microarray platforms (i.e., GWAS), alternative approaches robust to detection of low-frequency (1–5% MAF) and rare (<1%) variants are of great importance. Of direct relevance, we have available an accumulated wealth of linkage data collected through traditional genetic methods over several decades, the full value of which has not been exhausted. To that end, we compare results from two different linkage meta-analysis methods—GSMA and MSP—applied to the same set of 13 bipolar disorder and 16 schizophrenia GWLS datasets. Interestingly, we find that the two methods implicate distinct, largely non-overlapping, genomic regions. Furthermore, based on the statistical methods themselves and our contextualization of these results within the larger genetic literatures, our findings suggest, for each disorder, distinct genetic architectures may reside within disparate genomic regions. Thus, comparative linkage meta-analysis (CLMA) may be used to optimize low-frequency and rare variant discovery in the modern genomic era

    Combinatorial Mismatch Scan (CMS) for loci associated with dementia in the Amish

    Get PDF
    BACKGROUND: Population heterogeneity may be a significant confounding factor hampering detection and verification of late onset Alzheimer's disease (LOAD) susceptibility genes. The Amish communities located in Indiana and Ohio are relatively isolated populations that may have increased power to detect disease susceptibility genes. METHODS: We recently performed a genome scan of dementia in this population that detected several potential loci. However, analyses of these data are complicated by the highly consanguineous nature of these Amish pedigrees. Therefore we applied the Combinatorial Mismatch Scanning (CMS) method that compares identity by state (IBS) (under the presumption of identity by descent (IBD)) sharing in distantly related individuals from such populations where standard linkage and association analyses are difficult to implement. CMS compares allele sharing between individuals in affected and unaffected groups from founder populations. Comparisons between cases and controls were done using two Fisher's exact tests, one testing for excess in IBS allele frequency and the other testing for excess in IBS genotype frequency for 407 microsatellite markers. RESULTS: In all, 13 dementia cases and 14 normal controls were identified who were not related at least through the grandparental generation. The examination of allele frequencies identified 24 markers (6%) nominally (p ≤ 0.05) associated with dementia; the most interesting (empiric p ≤ 0.005) markers were D3S1262, D5S211, and D19S1165. The examination of genotype frequencies identified 21 markers (5%) nominally (p ≤ 0.05) associated with dementia; the most significant markers were both located on chromosome 5 (D5S1480 and D5S211). Notably, one of these markers (D5S211) demonstrated differences (empiric p ≤ 0.005) under both tests. CONCLUSION: Our results provide the initial groundwork for identifying genes involved in late-onset Alzheimer's disease within the Amish community. Genes identified within this isolated population will likely play a role in a subset of late-onset AD cases across more general populations. Regions highlighted by markers demonstrating suggestive allelic and/or genotypic differences will be the focus of more detailed examination to characterize their involvement in dementia

    Variability in Working Memory Performance Explained by Epistasis vs Polygenic Scores in the ZNF804A Pathway

    Get PDF
    Importance: We investigated the variation in neuropsychological function explained by risk alleles at the psychosis susceptibility gene ZNF804A and its interacting partners using single nucleotide polymorphisms (SNPs), polygenic scores, and epistatic analyses. Of particular importance was the relative contribution of the polygenic score vs epistasis in variation explained. Objectives To (1) assess the association between SNPs in ZNF804A and the ZNF804A polygenic score with measures of cognition in cases with psychosis and (2) assess whether epistasis within the ZNF804A pathway could explain additional variation above and beyond that explained by the polygenic score. Design, Setting, and Participants: Patients with psychosis (n = 424) were assessed in areas of cognitive ability impaired in schizophrenia including IQ, memory, attention, and social cognition. We used the Psychiatric GWAS Consortium 1 schizophrenia genome-wide association study to calculate a polygenic score based on identified risk variants within this genetic pathway. Cognitive measures significantly associated with the polygenic score were tested for an epistatic component using a training set (n = 170), which was used to develop linear regression models containing the polygenic score and 2-SNP interactions. The best-fitting models were tested for replication in 2 independent test sets of cases: (1) 170 individuals with schizophrenia or schizoaffective disorder and (2) 84 patients with broad psychosis (including bipolar disorder, major depressive disorder, and other psychosis). Main Outcomes and Measures: Participants completed a neuropsychological assessment battery designed to target the cognitive deficits of schizophrenia including general cognitive function, episodic memory, working memory, attentional control, and social cognition. Results: Higher polygenic scores were associated with poorer performance among patients on IQ, memory, and social cognition, explaining 1% to 3% of variation on these scores (range, P = .01 to .03). Using a narrow psychosis training set and independent test sets of narrow phenotype psychosis (schizophrenia and schizoaffective disorder), broad psychosis, and control participants (n = 89), the addition of 2 interaction terms containing 2 SNPs each increased the R2 for spatial working memory strategy in the independent psychosis test sets from 1.2% using the polygenic score only to 4.8% (P = .11 and .001, respectively) but did not explain additional variation in control participants. Conclusions and Relevance: These data support a role for the ZNF804A pathway in IQ, memory, and social cognition in cases. Furthermore, we showed that epistasis increases the variation explained above the contribution of the polygenic score

    Steroid receptor coactivator-1 modulates the function of Pomc neurons and energy homeostasis

    Get PDF
    Hypothalamic neurons expressing the anorectic peptide Pro-opiomelanocortin (Pomc) regulate food intake and body weight. Here, we show that Steroid Receptor Coactivator-1 (SRC-1) interacts with a target of leptin receptor activation, phosphorylated STAT3, to potentiate Pomc transcription. Deletion of SRC-1 in Pomc neurons in mice attenuates their depolarization by leptin, decreases Pomc expression and increases food intake leading to high-fat diet-induced obesity. In humans, fifteen rare heterozygous variants in SRC-1 found in severely obese individuals impair leptin-mediated Pomc reporter activity in cells, whilst four variants found in non-obese controls do not. In a knock-in mouse model of a loss of function human variant (SRC-1L1376P), leptin-induced depolarization of Pomc neurons and Pomc expression are significantly reduced, and food intake and body weight are increased. In summary, we demonstrate that SRC-1 modulates the function of hypothalamic Pomc neurons, and suggest that targeting SRC-1 may represent a useful therapeutic strategy for weight loss.Peer reviewe

    The UK10K project identifies rare variants in health and disease

    Get PDF
    M. Kivimäki työryhmäjäsen.The contribution of rare and low-frequency variants to human traits is largely unexplored. Here we describe insights from sequencing whole genomes (low read depth, 7x) or exomes (high read depth, 80x) of nearly 10,000 individuals from population-based and disease collections. In extensively phenotyped cohorts we characterize over 24 million novel sequence variants, generate a highly accurate imputation reference panel and identify novel alleles associated with levels of triglycerides (APOB), adiponectin (ADIPOQ) and low-density lipoprotein cholesterol (LDLR and RGAG1) from single-marker and rare variant aggregation tests. We describe population structure and functional annotation of rare and low-frequency variants, use the data to estimate the benefits of sequencing for association studies, and summarize lessons from disease-specific collections. Finally, we make available an extensive resource, including individual-level genetic and phenotypic data and web-based tools to facilitate the exploration of association results.Peer reviewe
    corecore