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Steroid receptor coactivator-1 modulates the
function of Pomc neurons and energy homeostasis
Yongjie Yang1, Agatha A. van der Klaauw2, Liangru Zhu1,3, Tessa M. Cacciottolo 2, Yanlin He 1,

Lukas K.J. Stadler2, Chunmei Wang1, Pingwen Xu1, Kenji Saito1, Antentor Hinton Jr.1, Xiaofeng Yan1,

Julia M. Keogh2, Elana Henning2, Matthew C. Banton2, Audrey E. Hendricks4,5, Elena G. Bochukova2,

Vanisha Mistry2, Katherine L. Lawler 2, Lan Liao6, Jianming Xu6, Stephen O’Rahilly 2, Qingchun Tong 7,

UK10K Consortium, Inês Barroso 4, Bert W. O’Malley 6, I. Sadaf Farooqi 2 & Yong Xu 1,6

Hypothalamic neurons expressing the anorectic peptide Pro-opiomelanocortin (Pomc)

regulate food intake and body weight. Here, we show that Steroid Receptor Coactivator-1

(SRC-1) interacts with a target of leptin receptor activation, phosphorylated STAT3, to

potentiate Pomc transcription. Deletion of SRC-1 in Pomc neurons in mice attenuates their

depolarization by leptin, decreases Pomc expression and increases food intake leading to

high-fat diet-induced obesity. In humans, fifteen rare heterozygous variants in SRC-1 found in

severely obese individuals impair leptin-mediated Pomc reporter activity in cells, whilst four

variants found in non-obese controls do not. In a knock-in mouse model of a loss of function

human variant (SRC-1L1376P), leptin-induced depolarization of Pomc neurons and Pomc

expression are significantly reduced, and food intake and body weight are increased.

In summary, we demonstrate that SRC-1 modulates the function of hypothalamic Pomc

neurons, and suggest that targeting SRC-1 may represent a useful therapeutic strategy for

weight loss.
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Transcriptional coactivators and corepressors regulate the
ability of nuclear hormone receptors (NRs) and tran-
scription factors (TFs) to enhance/suppress the expression

of target genes by facilitating the assembly of the transcription
complex at target gene promoters1. Understanding the molecular
mechanisms by which coactivators and corepressors alter gene
expression to modulate physiological processes may provide
insights into disease mechanisms and highlight potential ther-
apeutic targets.

Steroid receptor coactivator (SRC)-1 belongs to a family of
coactivators (SRC-1, -2, and -3) that mediate NR-dependent or
TF-dependent transcription2. Global deletion of SRC-1 in mice
leads to obesity3; however, to date, the molecular mechanisms
involved are incompletely understood. SRC-1 is abundantly
expressed in the hypothalamus, including neurons within the
arcuate nucleus of the hypothalamus (ARH)4, which play a key
role in mediating the weight-reducing effects of the adipocyte-
derived hormone leptin5,6. Leptin is a signal of nutrient depri-
vation, with a fall in leptin levels triggering a set of responses that
seek to restore energy homeostasis by increasing food intake and
decreasing energy expenditure7. In the fed state, an increase in
leptin levels leads to the activation of neurons expressing the
anorectic peptide Pro-opiomelanocortin (POMC) leading to a
reduction in food intake8. Specifically, leptin binding to its
receptor phosphorylates the transcription factor STAT3 which

dimerizes and translocates to the nucleus where it stimulates the
expression of POMC9–11. Leptin-induced STAT3 activation
also stimulates expression of Socs3 (suppressor of cytokine sig-
naling-3) which acts to inhibits leptin signaling12,13.

In this study, we sought to investigate the central mechanisms
by which SRC-1 modulates energy homeostasis. SRC family
members bind to STAT transcription factors in cells14. Thus, we
first examined the effects of SRC-1 on STAT3 transcriptional
activity and Pomc expression. We then characterized metabolic
phenotypes in mice lacking SRC-1 in Pomc neurons and explored
the underlying mechanisms. Additionally, we examined the
potential functional consequences of rare human variants in SRC-
1 identified in severe childhood-onset obesity. Finally, we
generated a knock-in mouse model of the most severe loss of
function human SRC-1 variant and characterized the metabolic
consequences of these mutant mice.

Results
SRC-1 interacts with pSTAT3 to stimulate Pomc expression.
We found that global SRC-1-KO mice15 had lower Pomc
but normal Socs3 mRNA levels in the hypothalamus
compared to control littermates (Fig. 1a). Using Chromatin-
immunoprecipitation (ChIP) assays, we found that leptin-
stimulated pSTAT3 binding to Pomc promoters was decreased
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Fig. 1 SRC-1 potentiates STAT3-induced Pomc expression. Numbers of mice/repeats in each group are indicated; data are presented as mean ± SEM and
compared using T-tests or two-way ANOVA followed by post hoc Sidak tests (#). a Pomc and Socs3 mRNA levels in hypothalami from 16-week old SRC-1-
KO and WT control littermates (n= 7/8); **P < 0.01. b ChIP assays detecting pSTAT3 binding on Pomc promoters in hypothalami from male SRC-1-KO and
control littermates 30min after leptin injections (5mg/kg, i.p.): site 1, −998 to −989; site 2, −361 to −353; site 3, −76 to −68 upstream of Pomc (n= 3/
4); *P < 0.05. c, d Effects of overexpressed constitutively active STAT3 and SRC-1 on Pomc- (c) or Socs3-luciferase activity (d) in Neuro2A cells (n= 5–9
independent experiments). ***P < 0.001 vs. empty vectors; ###P < 0.001 vs. STAT3 alone (#). e Change (Δ) in body weight after male control and
pomcSRC-1-KO mice were switched onto a HFD at day 97 (n= 6/9); *P < 0.05 and **P < 0.01 (#). f Fat mass and lean mass measured 28 days after HFD
feeding (n= 6/9); *P < 0.05. g Energy intake measured by CLAMS chambers in 12-week old male mice matched for body weight, lean mass, and fat mass.
Mice were subjected to a 2-day-chow–2-day-HFD protocol, and chow was replaced by HFD before the onset of dark cycle on day 3. Energy intake was
averaged for 2-day chow feeding period and for 2-day HFD feeding period (n= 7/8); *P < 0.05. h Cumulative HFD intake measured in 12-week old male
mice singly housed in home cages (n= 10/14); *P < 0.05 (#). i Change in body weight after control and MpomcSRC-1-KO mice were switched on a HFD at
the age of day 84 (n= 8); *P < 0.05 (#). j Fat mass and lean mass measured 30 days after HFD feeding (n= 8); *P < 0.05. k Cumulative HFD intake
measured in 12-week old male mice (n= 6/7); *P < 0.05 (#), **P < 0.01. Source data are provided as Source Data Fig. 1
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Fig. 2 SRC-1 mediates leptin signaling. Numbers of mice/experiments/neurons are indicated; data are presented as mean ± SEM and compared using
T-tests or one- or two-way ANOVA followed by post hoc Sidak tests (#). a Serum leptin levels 42 days after HFD feeding (n= 5/8); *P < 0.05. b Time
course of hypothalamic SRC-1-pSTAT3 interaction in C57Bl6 wild type mice that received i.p. injections of leptin (5 mg/kg). c Quantification of the
hypothalamic SRC-1-pSTAT3 interaction. *P < 0.05 (#). d Two-hour fasted mice (12 weeks of age) received i.p. injections of saline or leptin (5mg/kg)
15 min prior to refeeding and food intake was recorded for 1 h afterwards (n= 7/9); **P < 0.01 (#). e Representative pSTAT3 immunohistochemical
staining in the ARH and VMH of control and pomcSRC-1-KO mice receiving a single bolus i.p. injection of leptin (0.5 mg/kg, 90min). Scale bar= 50 μm.
3V the 3rd ventricle, ARH arcuate nucleus, VMH ventromedial hypothalamic nucleus. f Quantification of pSTAT3 (+) neurons in the ARH (n= 5); ***P <
0.001. g Representative traces of leptin-induced depolarization, in the presence of TTX, CNQX, DAP-5, and bicuculline, in mature Pomc neurons from
control mice vs. from MpomcSRC-1-KO mice after 1-week HFD feeding. h Responsive ratio (depolarization is defined as >2mV elevations in resting
membrane potential) (n= 39/43); P= 0.002 in χ2 tests. i Quantification of leptin-induced depolarization in two groups (n= 39/43); **P < 0.01. j
Representative traces of action potentials in untreated mature Pomc neurons from control mice vs. from MpomcSRC-1-KO mice. k, l Quantification of firing
frequency (k) and resting membrane potential (l) in two groups (n= 29–36); *P < 0.05. m Representative traces of mIPSC in untreated mature Pomc
neurons from control mice vs. from MpomcSRC-1-KO mice. n, o Quantification of amplitude (n) and frequency (o) of mIPSC in two groups (n= 13/14);
***P < 0.001. Source data are provided as Source Data Fig. 2
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in the hypothalamus of SRC-1-KO mice compared to control
mice (Fig. 1b). In keeping with these findings, SRC-1 over-
expression potentiated STAT3-induced Pomc transcription but
had no effect on Socs3 transcription in Neuro2A cells and
HEK293 cells (Fig. 1c, d; Supplementary Figure 1a-b). Similar
effects of SRC-1 were observed in SRC-1-KO MEFs cells, although
STAT3 alone could stimulate Pomc expression in these cells
devoid of endogenous SRC-1 (Supplementary Figure 1c-d). These
results indicate that SRC-1, while not required for STAT3 tran-
scriptional activity, can facilitate STAT3-induced Pomc
expression.

SRC-1 in Pomc neurons regulates energy homeostasis. To test
whether SRC-1 in Pomc neurons plays a functionally significant
role in energy homeostasis, we crossed SRC-1lox/lox mice with
Pomc-Cre mice to generate mice lacking SRC-1 selectively in
Pomc lineage cells (pomcSRC-1-KO, Supplementary Figure 1e).
On a standard chow diet, the body weight of male pomcSRC-1-
KO mice was comparable to control littermates (SRC-1lox/lox)
(Supplementary Figure 1f), whilst female pomcSRC-1-KO mice
showed significant weight gain (Supplementary Figure 1g). This
sexual dimorphism may be explained by our earlier observations
that global SRC-1 deficiency blunts the weight-reducing effects of
estrogen4. On a high fat diet (HFD), male pomcSRC-1-KO mice
gained significantly more weight compared to control littermates
(Fig. 1e) due to an increase in fat mass (Fig. 1f). In weight-
matched mice, we observed a significant increase in HFD intake
in pomcSRC-1-KO mice vs. controls (Fig. 1g, h); measurements

of energy expenditure were comparable (Supplementary
Figure 1h–j).

A caveat of the regular Pomc-Cre mouse line is that, during the
early development, Cre recombinase is transiently expressed in a
broader population of neurons and some of these Pomc lineage
cells mature into orexigenic Npy/Agrp neurons with opposing
effects on food intake16. To address this concern, we crossed a
Pomc-CreER transgene17 onto the SRC-1lox/lox mouse allele.
Tamoxifen induction at 9 weeks of age resulted in the deletion
of SRC-1 in mature Pomc neurons (MpomcSRC-1-KO; Supple-
mentary Figure 1k-l). When fed with a HFD, MpomcSRC-1-KO
mice displayed increased weight gain and fat mass, associated
with increased food intake compared to control littermates
(Fig. 1i–k), which recapitulated the phenotypes observed in
pomcSRC-1-KO mice. Collectively, these results indicate that
SRC-1 in mature Pomc neurons is required to defend against diet-
induced obesity.

SRC-1 in Pomc neurons is required for the anorectic effects of
leptin. Several studies have shown that STAT3 signaling is a
mediator of leptin’s effects on body weight10,18. In HFD-fed
pomcSRC-1-KO mice, we observed a 5–6-fold increase in circu-
lating leptin levels in HFD-fed pomcSRC-1-KO mice (Fig. 2a),
whilst adiposity only increased 2-fold (Fig. 1f). Thus, we hypo-
thesized that SRC-1 is downstream of leptin action and loss of
SRC-1 in Pomc neurons may impair leptin signaling. Supporting
this possibility, we found that intra-peritoneal administration of
leptin to control mice rapidly increased the hypothalamic SRC-1-
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Fig. 3 Missense variants in SRC-1 disrupt leptin signaling. Numbers of experiments are indicated; data are presented as mean ± SEM and compared using
one-way ANOVA followed by post hoc Sidak tests unless mentioned otherwise. a Rare variants identified in individuals with severe early onset obesity
(above) and in controls (below). b, c HEK293 cells were co-transfected with leptin receptor vector and human STAT3 vector. Cells were treated with leptin
(200 ng/ml, 15 min) to induce phosphorylation of STAT3. pSTAT3 was pulled down using anti-pSTAT3 sepharose beads; beads were then aliquoted
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(WT/mutant), and inputs of pSTAT3 and SRC-1-HA. c Quantification for WT and SRC-1 mutants. Comparative folds were calculated as the ratios of HA
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Cells were stimulated with 200 ng/ml leptin for 15min and then incubated for 6 h, following which luminescence was measured. Results were normalized
to empty vector-induced expression (n= 3–16); *P < 0.05. Source data are provided as Source Data Fig. 3
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pSTAT3 interaction (Fig. 2b, c). Leptin administration sig-
nificantly reduced 1-hour (1h) food intake in control mice but not
in pomcSRC-1-KO mice (Fig. 2d), despite increased leptin-
induced pSTAT3 in the arcuate nucleus (Fig. 2e, f). These results
suggest that the SRC-1-pSTAT3 interaction is downstream of
leptin-STAT3 signaling, and contributes to the acute anorectic
effects of leptin. Notably, the effects of leptin on 4 and 24 h food
intake were not significantly altered in pomcSRC-1-KO mice
(Supplementary Figure 2a-b), presumably because the anorectic
effects of leptin after the first hour are mediated by other leptin-
responsive neurons or other signaling pathways19,20.

Leptin also depolarizes a subset of Pomc neurons to exert its
anorectic effects8, although recent fiber photometry studies failed
to detect acute effects of leptin on calcium dynamics in Pomc
neurons21. Thus, we examined leptin-induced depolarization in

TOMATO-labeled mature Pomc neurons from MpomcSRC-1-KO
mice and tamoxifen-treated controls after 1-week HFD feeding.
We recorded leptin-induced changes in resting membrane
potential (RM) in the presence of tetrodotoxin (TTX), which
blocks action potentials, and a mixture of fast synaptic inhibitors
which block the majority of presynaptic inputs. We found that
26/39 (67%) of Pomc neurons from control mice were
depolarized (>2 mV elevations in RM) by leptin (Fig. 2g, h). In
contrast, only 14/43 (33%) of Pomc neurons from MpomcSRC-1-
KO mice were depolarized by leptin (P= 0.002) and the
amplitude of leptin-induced depolarization was significantly
reduced in these Pomc neurons (Fig. 2g–i). Interestingly, in the
absence of TTX and synaptic inhibitors, leptin-induced depolar-
ization and increases in firing frequency were comparable
between the two groups (Supplementary Figure 2c–f), suggesting
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Fig. 4 SRC-1L1376P/+ mice are obese. Numbers of mice in each group are indicated; data are presented as mean ± SEM and compared using T-tests or two-
way ANOVA followed by post hoc Sidak tests (#). a The PCR products (121 bp) around the L1376 were amplified from genomic DNA extracts of a WT and
two SRC-1L1376P/+ mutant mice and incubated with or without Sau3AI. Control reaction (WT) resulted in a single large fragment (121 bp) and DNAs from
the two SRC-1L1376P/+ mutant mice were cut into two fragments (70 and 51 bp) as expected. b Change in body weight after male control and SRC-1L1376P/+

mice were fed on a HFD (n= 5/6); *P < 0.05 (#). c Fat mass and lean mass measured 7 weeks after HFD feeding (n= 5/6); ***P < 0.001. d Cumulative
HFD intake measured (n= 5/6); *P < 0.05 or **P < 0.01 (#). e Pomc mRNA levels in hypothalami from 20-week old HFD-fed male control and SRC-1L1376P/
+ mice (n= 12/16); *P < 0.05. f Representative traces of leptin-induced depolarization, in the presence of TTX, CNQX, DAP-5, and bicuculline, in
Pomc neurons from control mice vs. from SRC-1L1376P/+ mice after 1-week HFD feeding. g Responsive ratio (depolarization is defined as >2mV elevations
in resting membrane potential) (n= 19); P= 0.022 in χ2 tests. h Quantification of leptin-induced depolarization in two groups (n= 19); ***P < 0.001.
i Representative traces of action potentials in untreated Pomc neurons from control mice vs. from SRC-1L1376P/+ mice. j, k Quantification of firing frequency
(j) and resting membrane potential (k) in two groups (n= 22–28); ***P < 0.001. l Representative traces of mIPSC in untreated Pomc neurons from control
mice vs. from SRC-1L1376P/+ mice. m, n Quantification of amplitude (m) and frequency (n) of mIPSC in two groups (n= 10/12); ***P < 0.001. Source data
are provided as Source Data Fig. 4
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that indirect effects of leptin through presynaptic terminals22,23

were not affected by the loss of SRC-1 in Pomc neurons. Notably,
the baseline firing frequency was significantly decreased in
mature Pomc neurons from MpomcSRC-1-KO mice compared
to those from control mice, whereas the baseline RM remained
unchanged (Fig. 2j–l). We found that the amplitude, but not the
frequency, of miniature inhibitory postsynaptic currents (mIPSC)
was significantly higher in mature Pomc neurons from
MpomcSRC-1-KO mice than those from control mice
(Fig. 2m–o). The frequency of mIPSC is thought to reflect
presynaptic events (e.g., GABA release), while mIPSC amplitude
is largely determined by the responsiveness of postsynaptic
neurons. Thus we suggest that SRC-1 also regulates the
responsiveness of Pomc neurons to GABA-ergic inputs via a
leptin-independent mechanism.

Rare SRC-1 variants found in obese humans impairs SRC-1
functions. We next investigated the potential role of SRC-1 in
humans by interrogating exome sequencing and targeted rese-
quencing data on 2548 European ancestry individuals with severe,
early-onset obesity (mean body mass index [BMI] standard
deviation score= 3; age of onset < 10 years) and 1117 ancestry-
matched controls24. Eleven rare heterozygous variants in SRC-1
were identified; another 8 variants were identified in an earlier
data release (total n= 19). Fifteen SRC-1 variants were identified
only in obese cases (N1212K was found in two unrelated obese
individuals); the other 4 variants were found in controls (Fig. 3a).
Compared to WT SRC-1, six of seven randomly selected SRC-1
mutants found in obese cases (except for S738L) were sig-
nificantly impaired in their interaction with pSTAT3 in leptin-
treated HEK293 cells (Fig. 3b, c, Supplementary Figure 3a–c). To
test whether heterozygous SRC-1 variants exerted a dominant
negative effect to inhibit the interaction between WT SRC-1 and
pSTAT3, we overexpressed SRC-1 mutants in HEK293 cells
which endogenously express SRC-1. After leptin treatment, an
anti-pSTAT3 antibody was used to pull down the immunocom-
plex from cell lysates, followed by immunoblotting with an anti-
SRC-1 antibody to examine the interaction between pSTAT3 and
total SRC-1. Overexpression of SRC-1 mutants found in obese
cases (6 of 7 tested mutants) significantly decreased the interac-
tion between pSTAT3 and the total SRC-1, suggesting that these
SRC-1 mutants can impair the ability of WT SRC-1 to interact
with pSTAT3 (Fig. 3d, e and Supplementary Figure 3d-e). This
dominant negative effect was not seen when testing the 4 mutants
found in controls (Fig. 3e and Supplementary Figure 3d). We
used a POMC-luciferase reporter assay to examine the effects of
leptin on Pomc expression. We found that WT SRC-1 sig-
nificantly enhanced leptin-induced Pomc-luciferase reporter
activity, but co-expression of a dominant negative form of STAT3
abolished this effect (Supplementary Figure 3f-g), suggesting that
the interaction with STAT3 is required for the observed effects of
SRC-1 on Pomc transcription. Fourteen of fifteen SRC-1 mutants
found in severely obese cases (except for S738L) significantly
impaired leptin-induced Pomc expression, whereas the 4 control
mutants exhibited WT-like responses in this assay (Fig. 3f).
Interactions with estrogen receptor-α, vitamin D receptor, glu-
cocorticoid receptor, thyroid hormone receptor-β, and peroxi-
some proliferator-activated receptor γ (PPARγ) were comparable
to those seen for WT SRC-1 (Supplementary Figure 4) in
co-immunoprecipitation assays.

A mouse model of the human SRC-1 variant L1376P is obese.
To directly test whether rare human SRC-1 variants contribute to
Pomc neuron function and/or energy homeostasis, we generated
a knock-in mouse model of a human variant which results in a

severe loss of function in cells, SRC-1L1376P (Fig. 4a). Hetero-
zygous mutant mice (SRC-1L1376P/+) fed a HFD exhibited
increased weight gain, adiposity and food intake, associated with
reduced Pomc mRNA levels compared to WT controls
(Fig. 4b–e). We recorded leptin-induced depolarization in Pomc
neurons in control vs. SRC-1L1376P/+ mice 1 week after HFD
feeding. In control mice, 13/19 (68%) Pomc neurons were
depolarized by leptin, whilst only 5/18 (26%) Pomc neurons from
SRC-1L1376P/+ mice were depolarized by leptin (P= 0.022) and
the amplitude of leptin-induced depolarization was significantly
reduced in these Pomc neurons (Fig. 4f–h). Baseline firing fre-
quency and resting membrane potential were both significantly
decreased in Pomc neurons from SRC-1L1376P/+ mice compared
to those from control mice (Fig. 4i–k). Further, the amplitude, but
not the frequency, of the mIPSC was significantly higher in Pomc
neurons from SRC-1L1376P/+ mice than those from control mice
(Fig. 4l–n). Thus, these data indicate that the SRC-1L1376P

variant causes obesity in mice, associated with decreased Pomc
expression and decreased Pomc neuron excitability through both
leptin-dependent and independent mechanisms.

Discussion
In this study, we demonstrated that in the hypothalamus, the
coactivator SRC-1 modulates the ability of leptin to regulate the
expression of the anorectic peptide POMC by directly interacting
with phosphorylated STAT3, a known product of leptin-receptor
activation. In mice, disruption of SRC-1 in Pomc neurons led to
increased food intake, weight gain on a HFD and impaired the
acute anorectic response to leptin administration demonstrating
the physiological relevance of this molecular interaction. The
modest degree of obesity in these mice was comparable to that
seen with inactivation of STAT3 in Pomc neurons9 and studies
demonstrating that direct leptin action on Pomc neurons
accounts for a proportion of leptin’s effects on body
weight19,20,25,26. The obesity seen in SRC-1 deletion or mutant
mice was less severe than that see in mice deficient in Pomc27 or
melanocortin 4 receptor28 in keeping with SRC-1’s role as a
modulator of Pomc expression. Additionally, leptin-responsive
Agrp neurons have been shown to play a major role in energy
homeostasis20.

We identified 15 rare heterozygous variants in SRC-1 in
16 severely obese individuals and 4 rare variants in controls.
Notably, there are several low frequency and many rare variants
in this gene in publically available databases (http://gnomad.
broadinstitute.org/). Some of these low frequency variants have
been shown to have functional consequences, for example,
P1272S (MAF: 3.16% in cases, 3.45% in controls; 1.66% in gno-
mAD) disrupts a putative glycogen synthase 3 (GSK3)β phos-
phorylation site and has been shown to exhibit reduced ability to
co-activate Estrogen Receptor in multiple cell lines29. Genetic
studies in larger numbers of cases and controls with functional
studies of all variants identified will be needed to establish whe-
ther variants that result in a loss of function when tested in cells
are more likely to be found in severely obese individuals than in
controls. In this study, the variants found in obese individuals,
but not those found in controls, were associated with impaired
interaction with pSTAT3 and reduced POMC reporter activity in
cells, predominantly through a dominant negative effect. Given
the challenges associated with studying such rare variants, and to
directly test whether rare human SRC-1 variants contribute to
Pomc neuron function and/or energy homeostasis, we generated
a knock-in mouse model of a human variant which results in a
severe loss of function in cells, SRC-1L1376P. The increased food
intake and weight gain in heterozygous knock-in mice carrying a
severe loss of function human SRC-1 variant supports the
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potential importance of the mechanism identified here in
humans.

Recent evidence indicates that loss of leptin receptors in Pomc
neurons does not affect body weight in chow-fed mice19,20. In line
with these reports, we show that loss of SRC-1 in Pomc neurons
produced minor effects on energy balance in chow-fed male mice.
These suggest that the physiological consequences of disrupting
this interaction in normal weight animals are small and/or may
be compensated for by increased signaling through non-POMC
expressing leptin-responsive neurons30 and/or signaling via
phosphoinositide-3-kinase (PI3K)31, mTOR/S6K32 and/or AMPK
pathways33,34. We showed that SRC-1 deletion in Pomc neurons
attenuated the acute anorectic response (1 h) to leptin but not the
late phase (4–24 h). Cumulatively, these findings indicate that
leptin-mediated POMC expression (modulated by the SRC-1-
pSTAT3 interaction) primarily contributes to the acute anorectic
response to leptin. In keeping with this finding, we demonstrated
that the hypothalamic SRC-1-pSTAT3 interaction was enhanced
by leptin. Consumption of HFD leads to sustained positive energy
balance and an increase in leptin levels. The resulting increase in
pSTAT3 would be expected to stimulate POMC expression and
reduce food intake, a response that we have shown is modulated
by the interaction between pSTAT3 and SRC-1. We suggest that
in the absence of functional SRC-1, pSTAT3 is less effective at
stimulating POMC expression, which manifests as a relative
increase in food intake and weight gain when mice are challenged
with HFD. In this way, we conclude that SRC-1 acts as a positive
regulator of leptin sensitivity in hypothalamic Pomc neurons.

Our findings suggest that SRC-1 facilitates but is not required
for pSTAT3 to regulate Pomc expression and that this effect is
target-specific as SRC-1 does not modulate the ability of pSTAT3
to regulate Socs3. The mechanisms underlying such specificity
remain unclear at present. The molecular interaction between
SRC-1 and pSTAT3 enhances pSTAT3-mediated transcriptional
activity, presumably by stabilizing pSTAT3 binding to the POMC
promoter, although we cannot exclude the possibility that
recruitment of other co-coactivators or histone acetyltransferase
activity of SRC-1 also may be involved35. Further studies of the
molecular mechanisms that modulate leptin signaling are
emerging36–41. For example, Chen et al showed that the nuclear
receptor Nur77 facilitates STAT3 acetylation by recruiting acet-
ylase p300 and disassociating deacetylase histone deacetylase 1
(HDAC1) to enhance the transcriptional activity of STAT342. In
findings that parallel our studies, they showed that Nur77 defi-
ciency reduced the expression of Pomc in the hypothalamus and
attenuated the response to leptin in mice fed on a HFD42.

Transcriptional coactivators such as SRC-1 facilitate the sig-
naling mediated by multiple NRs and/or TFs factors2. Several
NRs/TFs have been shown to affect energy homeostasis through
their actions in the brain43, including FoxO144–47, ERα48,49,
PPARγ50,51, and THR52 and thus could contribute to the body
weight phenotype seen with SRC-1 disruption in mice and loss of
function variants in humans. In addition to the central actions of
SRC-1 on energy homeostasis, SRC-1 is expressed in brown
adipose tissue, where it appears to compete with SRC-2 to
interact with the PPARγ-PGC1α complex. Picard et al showed
that SRC-1-KO mice had reduced rectal temperatures upon cold
exposure and reduced oxygen consumption although they did not
quantify food intake in this study3. Notably, we did not observe
any changes in energy expenditure in mice lacking SRC-1 in
Pomc neurons, consistent with the notion that SRC-1 in other
tissues may also contribute to the regulation of energy expendi-
ture3. Whilst we found that SRC-1 variants detected in obese
patients did not affect the interactions with a number of NRs,
these results do not exclude the potential impact of SRC-1 var-
iants on the signaling of these NRs which need to be explored in

more detail using tissue-specific conditional knockout mouse
models.

Targeting specific coactivator-mediated interactions has
emerged as a potential therapeutic strategy to enhance signaling
in some tissues while inhibiting signaling in others53,54. For
example, Selective Estrogen Receptor Modulators (SERMs) are
effective in modulating the growth of hormone-responsive
tumors (e.g., Tamoxifen in breast cancer) by impacting on
coactivator stability and activity55. As such, compounds that
target the interaction between SRC-1 and STAT3 at specific sites
may potentially be used to modulate (i.e., enhance) leptin sig-
naling. Could this approach be efficacious in the treatment of
obesity? Studies in mice and humans have consistently demon-
strated that leptin sensitivity is greatest in those with no/very low
endogenous circulating leptin levels56,57. Whether enhancing
leptin sensitivity in the context of common obesity, which is
associated with elevated leptin levels, may be clinically beneficial,
is the subject of much debate18,58–60. The finding that some
compounds (e.g., the amylin derivative pramlintide) can augment
the effects of leptin61,62, suggests that it may be possible to
increase the sensitivity of some individuals to therapeutic leptin
administration and that this approach may lead to weight loss.
These observations and our findings on SRC-1 suggest that
pharmacological approaches based on the modulation of leptin
sensitivity could represent a potential therapeutic strategy for the
treatment of obesity-associated metabolic disease.

Methods
Contact for reagent and resource sharing. Further information and requests for
resources and reagents should be directed to and will be fulfilled by Yong Xu
(yongx@bcm.edu) and Sadaf Farooqi (isf20@cam.ac.uk).

Experimental model and subject details. Mice: We crossed regular Pomc-Cre
transgenic mice26 and SRC-1lox/lox mice63. This cross produced pomcSRC-1-KO
mice (those that are homozygous for SRC-1lox/lox and also carry the Pomc-Cre
transgene) and control mice (those that are homozygous for SRC-1lox/lox but do not
carry the Pomc-Cre transgene). These littermates were used to characterize the
metabolic profile.

In addition, we also crossed inducible Pomc-CreER mice17 with SRC-1lox/lox

mice to generate MpomcSRC-1-KO mice (those that are homozygous for
SRC-1lox/lox and also carry the Pomc-CreER transgene) and control mice (those that
are homozygous for SRC-1lox/lox but do not carry the POMC-CreER transgene).
Both these mice received tamoxifen injections (0.2 mg/g, i.p., twice at 9 weeks of
age). These littermates were used to characterize the metabolic profile. For
electrophysiological recordings, we crossed the inducible Pomc-CreER and the
Rosa26-tdTOMATO mouse alleles onto SRC-1lox/lox mice, to produce MpomcSRC-
1-KO mice with mature Pomc neurons labeled by TOMATO; as controls, we
crossed inducible Pomc-CreER mice and Rosa26-tdTOMATO mice to generate
Pomc-CreER/Rosa26-tdTOAMTO mice. In parallel, we also crossed the Npy-GFP
mouse allele23 and the Rosa26-tdTOMATO allele onto inducible Pomc-CreER mice.
This cross produced Pomc-CreER/Rosa26-tdTOAMTO/Npy-GFP mice, which were
subjected to histology validation for the inducible Pomc-CreER mice.

To generate the SRC-1L1376P/+ knock-in mice, a single-guide RNA (sgRNA)
sequence was selected overlap amino acid residue L1382 (equivalent to human
L1376) in SRC-1 (sgRNA 5′-CATCTGCGTCTGTTTTGAGAagg chr12:4253665-
4253687; GRCm38/mm10) using the CRISPR Design Tool (Ran et al. 2013). A
DNA templates for in vitro transcription of the sgRNA was produced using
overlapping oligonucleotides in a high-fidelity PCR reaction64, and sgRNA was
transcribed using the MEGAshortscript T7 kit (ThermoFisher, Waltham, MA).
Cas9 mRNA was purchased from ThermoFisher. The donor DNA template to
introduce the L1382P point mutation, as well as a silent mutation D1381D to
introduce a novel restriction site for Sau3AI, was purchased as an Ultramer from
IDT (Coralville, IA). The sequence of ssODN is as follows (complementary to non-
target strand): 5′ TGAAAATCTG CTCTTTTGTT TATCCTTAAT AGATGAATG
A TCCAGCACTG AGACACACAG GCCTCTACTG CAACCAGCTC TCGTCCA
CTG ATCCCCTCAA AACAGACGCA GATGGAAACC AGGTCAGTAA GAAA,
where the homology arms are in bold. The mutations introduced in the donor
sequence disrupt base 20 of the sgRNA and the PAM site to prevent additional
mutagenesis. The BCM Genetically Engineered Mouse (GEM) Core microinjected
Cas9 mRNA (100 ng/μl), Ultramer ssDNA (100 ng/µl), and sgRNA (20 ng/μl) into
the cytoplasm of 200 pronuclear stage C57Bl/6J embryos. Cytoplasmic injections
were performed using a microinjection needle (1 mm outer and 0.75 mm inner)
with a tip diameter of 0.25–0.5 μm, an Eppendorf Femto Jet 4i to set pressure and
time to control injection volume (0.5–1 pl per embryo). Injections were performed
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under a 200–400× magnification with Hoffman modulation contrast for
visualizations. Founder animals (F0) were identified by PCR-based restriction
digestion to detect the CRISPR generated point mutations in SRC-1. PCR product
was first amplified with the primer pairs: 5′-CCTCACTT
GTGGCAATGTGA and 5′-TCGTGGCAGTTCTGTAGTCAC; and then amplified
with 2nd pairs: 5′-CACTGAGACACACAGGCCTC and 5′-ATCGAATCTG
CCAGCTCTGC. The 121 bp PCR products were then digested with Sau3AI. 70
and 51 bp products after digest could be detected only for the mutated SRC-1 PCR
products. Three independent lines were sequenced for the further confirmation of
the point mutation. One of these lines was crossed to C57Bl6j to produce cohorts
comprised of SRC-1L1376P/+ and wild-type control mice. In some breedings, the
Pomc-CreER/Rosa26-tdTOAMTO alleles were introduced to allow specific labeling
of Pomc neurons.

In parallel, we crossed heterozygous SRC-1-KO mice65 to heterozygous SRC-1-
KO mice to produce homozygous SRC-1-KO and wild-type littermates. All the
breeders have been backcrossed to C57Bl6 background for more than 12
generations. In addition, some C57Bl6 mice were purchased from the mouse
facility of Baylor College of Medicine.

Care of all animals and procedures were approved by the Institutional Animal
Care and Use Committee (IACUC) of Baylor College of Medicine Animal Facility,
and all experimental procedures in animals complied with all relevant ethical
regulations. Mice were housed in a temperature-controlled environment in groups
of 2–5 at 22–24 °C using a 12 h light/12 h dark cycle. Some cohorts were singly
housed to measure food intake. The mice were fed either standard chow (6.5% fat,
#2920, Harlan-Teklad, Madison, WI), or a 60% HFD (60% fat, #D12492, Research
Diets). Water was provided ad libitum.

Studies in mice. Validation of genomic deletion of SRC-1 in Pomc cells: Control
mice, pomcSRC-1-KO mice or MpomcSRC-1-KO mice (after tamoxifen induc-
tions) were anesthetized with inhaled isoflurane, and sacrificed. Various tissues, as
detailed in the figures, were collected. Genomic DNAs were extracted using the
REDExtract-N-Amp Tissue PCR Kit (#XNATS; Sigma-Aldrich, St Louis, MO),
followed by PCR amplification of the floxed or recombined alleles. We used pri-
mers: forward-CAGTAAGGAATAGCAGATGTC and reverse-
TGGCATCTATAACCAAATGTGTA TCA to detect the wild-type allele (a 560 bp
band) and the floxed SRC-1 allele (a 630 bp band); and combined the reverse
primer (mentioned above) with another forward primer: GTCGTACCATC-
TATGCCTCCTATAT to detect the recombined SRC-1 allele (a 320 bp band).

Histology: To validate specificity of the inducible Pomc-CreER transgene, Pomc-
CreER/Rosa26-tdTOAMTO/Npy-GFP mice received tamoxifen injections (0.2 mg/g,
i.p., twice) at 9 weeks of age, and then were perfused 1 week later. Brain sections
were cut at 25 μm (1:5 series) and subjected to direct visualization of GFP and
TOMATO signals using a Leica DM5500 fluorescence microscope with OptiGrid
structured illumination configuration.

To examine the effects of leptin on STAT3 phosphorylation in vivo, control and
pomcSRC-1-KO mice (5 or 6 per group) were fasted overnight and then received a
single bolus injection of saline or leptin (0.5 mg/kg, i.p.). Ninety minutes after the
bolus injections, mice were anesthetized with inhaled isofluorane, and quickly
perfused with 10% formalin, and brain sections were cut at 25 μm. The brain
sections were pretreated (1% H2O2, 1% NaOH, 0.3% glycine, 0.03% SDS), blocked
(3% goat-anti-rabbit serum for 1 h), incubated with rabbit anti-pSTAT3 antibody
(1:2000; #9145, Cell Signaling) on shaker at room temperature for 24 h and then
put in 4 °C for 48 h, followed by biotinylated anti-rabbit secondary antibody
(1:1000; Vector) for 2 h. Sections were then incubated in the avidin–biotin complex
(1:500, ABC; Vector Elite Kit) and incubated in 0.04% 3,3′-diaminobenzidine and
0.01% hydrogen peroxide. After dehydration through graded ethanol, the slides
were then immersed in xylene and cover-slipped. Images were analyzed using a
brightfield Leica microscope. The numbers of pSTAT3-positive neurons in the
ARH were counted by blinded investigators. For each mouse, pSTAT3-positive
neurons were counted in 3–5 consecutive brain sections containing ARH, and the
average was treated as the data value for that mouse. Five or six mice were included
in each group for statistical analyses.

Body weight study: pomcSRC-1-KO mice and their control littermates were
weaned at week 4. These mice were group housed and maintained on the standard
chow (6.5% fat, #2920, Harlan-Teklad). At the age of day 97, mice were switched to
the HFD (60% fat, #D12492, Research Diets) for 6 weeks. Body weight was
measured every 4 days since weaning. Body composition was determined using
quantitative magnetic resonance (QMR) on 28 days after HFD feeding. On day 42
after HFD feeding, the mice were deeply anesthetized with inhaled isoflurane and
sacrificed. Blood was collected and processed to measure serum leptin using the
mouse leptin ELISA kit (#90030, Crystal Chem, Inc.). Serum samples with
hemolysis (one from each group) were excluded from leptin ELISA assay. The
gonadal white adipose tissue, the inguinal white adipose tissue, and the
interscapular brown adipose tissue were isolated and weighed.

Similarly, MpomcSRC-1-KO mice and their control littermates were weaned at
week 4. These mice were singly housed and maintained on the standard chow
(6.5% fat, #2920, Harlan-Teklad). All mice received tamoxifen injections (0.2 mg/g,
i.p., twice) at 9 weeks of age. At the age of day 84, mice were switched to the HFD
(60% fat, #D12492, Research Diets) for 30 days. Body weight and food intake were

measured every 4 days. Body composition was determined using QMR on 30 days
after HFD feeding.

Food intake and energy expenditure: To further characterize the food intake and
energy expenditure of pomcSRC-1-KO mice, an independent male cohort
(pomcSRC-1-KO mice and their control littermates) was weaned on the standard
chow. At the age of 12 weeks, these mice were acclimated into the Comprehensive
Laboratory Animal Monitoring System (CLAMS). Mice were housed individually
at room temperature (22 °C) under an alternating 12:12-h light-dark cycle. After
adaptation for 3 days, mice were subjected to a 2-day-chow–2-day-HFD protocol.
Chow was replaced by HFD before the onset of dark cycle on day 3. Note that, the
body weight and body composition were measured before the mice entered the
CLAMS metabolic cages, and no difference was observed in body weight, fat mass,
and lean mass.

Another male cohort (pomcSRC-1-KO mice and their control littermates) was
weaned on the standard chow. At the age of 11 weeks, these mice were singly
housed and at week 12, the chow diet was replaced by HFD. HFD intake was
measured every 2 days for 10 days.

Leptin-induced anorexia: Male pomcSRC-1-KO mice and their control
littermates (chow-fed) were briefly fasted for 2 h prior to the onset of dark cycle.
These mice received intraperitoneal injections of saline or leptin (5 mg/kg in saline
in a volume of 0.01 ml/g body weight) at 15 min prior to the dark cycle. The
standard chow was provided at the onset of dark cycle. Food intake was measured
1, 4, and 24 h after food provision. Each mouse was tested with saline and leptin,
administered in a counterbalanced order, with 4-day interval between the
treatments.

Electrophysiology: For electrophysiological studies, Pomc-CreER/Rosa26-
tdTOMATO (control) mice and Pomc-CreER/Rosa26-tdTOMATO/SRC-1lox/lox

(MpomcSRC-1-KO) mice received tamoxifen inductions (0.2 mg/g, i.p., twice at
9 weeks of age) and fed on HFD for 1 week. Pomc-CreER/Rosa26-tdTOMATO/
SRC-1L1376P/+ and their control littermates (Pomc-CreER/Rosa26-tdTOMATO)
were also fed on HFD for 1 week followed by electrophysiology recording as
described below. Briefly, at 9:00–9:30 am, these mice were deeply anesthetized with
isoflurane and transcardially perfused with a modified ice-cold artificial cerebral
spinal fluid (aCSF, in mM: 10 NaCl, 25 NaHCO3, 195 Sucrose, 5 Glucose, 2.5 KCl,
1.25 NaH2PO4, 2 Na pyruvate, 0.5 CaCl2, 7 MgCl2)47. The mice were then
decapitated, and the entire brain was removed. Brains was quickly sectioned in ice-
cold aCSF solution (in mM: 126 NaCl, 2.5 KCl, 1.2 MgCl2, 2.4 CaCl2, 1 NaH2PO4,
11.1 Glucose, and 21.4 NaHCO3)23 saturated with 95% O2 and 5% CO2. Coronal
sections containing the ARH (250 µm) was cut with a Microm HM 650V
vibratome (Thermo Scientific). Then the slices were recovered in the aCSF23 at
34 °C for 1 h.

Whole-cell patch clamp recordings were performed in the TOMATO-labeled
mature Pomc neurons in the ARH visually identified by an upright microscope
(Eclipse FN-1, Nikon) equipped with IR-DIC optics (Nikon 40× NIR). Signals were
processed using Multiclamp 700B amplifier (Axon Instruments), sampled using
Digidata 1440A and analyzed offline on a PC with pCLAMP 10.3 (Axon
Instruments). The slices were bathed in oxygenated aCSF23 (32–34 °C) at a flow
rate of approximately 2 ml/min. Patch pipettes with resistances of 3–5MΩ were
filled with solution containing 126 mM K gluconate, 10 mM NaCl, 10 mM EGTA,
1 mM MgCl2, 2 mM Na-ATP and 0.1 mM Mg-GTP (adjusted to pH 7.3 with
KOH).

Current clamp was engaged to test neural firing frequency and RM at the
baseline and after puff application of leptin (300 nM, 1 s). In some experiments, the
aCSF solution also contained 1 μM TTX and a cocktail of fast synaptic inhibitors,
namely bicuculline (50 μM; a GABA receptor antagonist), DAP-5 (30 μM; an
NMDA receptor antagonist) and CNQX (30 μM; an AMPA receptor antagonist) to
block the majority of presynaptic inputs. The values for RM and firing frequency
were averaged within 2-min bin at the baseline or after leptin puff. The RM values
were calculated by Clampfit 10.3 using the “analysis → statistic” function of the
software. A neuron was considered depolarized or hyperpolarized if a change in
membrane potential was at least 2 mV in amplitude and this response was observed
after leptin application and stayed stable for at least 2 min. For the miniature
inhibitory postsynaptic current (mIPSC) recordings, patch electrodes were filled
with a recording solution that contained (in mM): 153.3 CsCl, 1.0 MgCl2, 5.0
EGTA, and 10.0 HEPES, pH of 7.20 with CsOH. CsCl was included to block
potassium currents. Mg-ATP (3 mM) was added to the intracellular solution before
recording. Glutamate receptor-mediated synaptic currents were blocked by 30 μM
D-AP-5 and 30 μM CNQX in the external solution, along with 1 μM tetrodotoxin
in the external solution blocking action potentials. Neurons were voltage-clamped
at −70 mV during the recording.

At the end of recordings, lucifer yellow dye was included in the pipette solution
to trace the recorded neurons and the brain slices were fixed with 4% formalin
overnight and mounted onto slides. Cells were then visualized with the Leica
DM5500 fluorescence microscope to identify post hoc the anatomical location of
the recorded neurons in the ARH.

Real-time PCR analyses: Total RNA was isolated using TRIzol Reagent
(Invitrogen) according to the manufacturer’s protocol and reverse transcription
reactions were performed from 2 μg of total RNA using a High-Capacity cDNA
Reverse Transcription Kits (Invitrogen). cDNA samples were amplified on an
CFX384 Real-Time System (Bio-Rad) using SsoADV SYBR Green Supermix (Bio-
Rad). Correct melting temperatures for all products were verified after
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amplification. Results were normalized against the expression of house-keeping
gene-Cyclophilin. Primer sequences were listed in Supplementary Table 1.

Immunoprecipitation (Co-IP) and immunoblotting: The harvested hypothalami
were lysed in lysis buffer (50 mM Tris–HCl, pH 8.0, 50 mM KCl, 20 mM NaF,
1 mM Na3VO4, 10 mM sodium pyrophosphate, 5 mM EDTA, and 0.5% Nonidet
P-40) supplemented with protease inhibitors (1 mm phenylmethylsulfonyl fluoride,
and 20 μg/ml each of leupeptin, aprotinin, and pepstatin). Lysates were cleared by
centrifugation at 18,000 ×g for 10 min and used for immunoprecipitation or
directly for immunoblotting. Equal amounts of tissue lysates were incubated with
anti-Phospho-STAT3 (Tyr705) (D3A7) XP-Sepharose beads (Cell Signaling) or
with a rabbit monoclonal SRC-1 (128E7) antibody (Cell Signaling) after preclearing
for overnight and pulled down with Protein A/G agarose beads (Santa Cruz),
respectively. Beads were washed three times with lysis buffer, and proteins were
released from beads in SDS-sample buffer and analyzed by immunoblotting. For
immunoblotting, protein samples were loaded onto SDS-polyacrylamide gels and
transferred to a nitrocellulose membrane. The blot was probed with a rabbit
monoclonal SRC-1 (128E7) antibody at 1:3000 (Cell Signaling), a rabbit
monoclonal phospho-STAT3 (Tyr705) (D3A7) XP antibody at 1:2000 (Cell
Signaling), or a monoclonal anti-β-Actin antibody (AC-15) at 1:10000 (Sigma).
The secondary antibody was rabbit anti-mouse IgG or goat anti-rabbit IgG
(Jackson ImmunoResearch), both at a 1:10,000 dilution, followed by development
with the SuperSignal West Pico Chemiluminescent Substrate (Pierce).

Chromatin immunoprecipitation assay (ChIP): Fresh isolated hypothalami were
homogenized and cross-linked in 1% formaldehyde. Then, the cross-linked
protein–DNA complexes were sonicated to a length between 200 and 500 bp. The
total chromatin (1%) was saved as an “input” for later quantification. Complexes
were pre-cleared and incubated with the Pierce Protein A/G Magnetic Beads
(Thermo Scientific) and antibodies against STAT3 (sc-482; Santa Cruz) overnight
at 4 °C. Subsequently, cross-linking was reversed by overnight incubation at 65 °C.
DNAs were purified by phenol/chloroform extraction, ethanol precipitation and
the enriched promoter fragments were measured by qPCR (primer sequences
provided in Supplementary Table 1). Relative STAT3 promoter occupancy was
adjusted to the background content of the negative control, and the initial
chromatin input. The assays were repeated independently 3 times.

Generation of SRC-1 constructs and expression plasmids: The long form of SRC-
1 containing a C-terminal Flag MYC tag was purchased from Origene (RC224812).
The short form of SRC-1 was generated using the Q5 site-directed mutagenesis kit
(NEB) using primers containing the sequence specific to the short form of SRC-1.
The N-terminal HA tag was added using the Q5 site-directed mutagenesis kit
(NEB) using primers containing the HA tag sequence. The short and long forms of
SRC-1 was then cloned into the pCDNA3.1(+) vector using KpnI and XhoI
restriction sites after PCR amplification of SRC-1 using primers flanking the
Origene KpnI and XhoI sites. SRC-1 mutant constructs were generated using the
Quickchange II XL site-directed mutagenesis kit (Agilent).

In vitro protein interaction: HEK293 (Human embryonic kidney 293) cells were
transfected with either Flag-tagged transcriptional factor (hSTAT3 or hPPARγ),
Flag-tagged human hormone receptor (ERα, VDR, THRβ or GR) or empty vector
using lipofectamine 2000 (Invitrogen). Before harvest, cell were treated with leptin
(at 200 ng/ml, 15 min, HARBOR-UCLA Research And Education Institute), or
rosiglitazone (at 50 μM, ADIPOGEN), 17β-estradiol (at 0.2 μg/ml, Sigma, E2758),
Vitamin D3 (Calcitriol at 0.2 μM, TOCRIS), dexamethasone (at 10 μM, Sigma,
D4902) for 30 min. Cells were collected and lysed with cell lysis buffer: 50 mM Tris,
50 mM KCL, 10 mM EDTA, 1% NP-40, supplied with protease inhibitor cocktail
(Roche) and phosphatase inhibitor cocktail A (Santa Cruz). The lysates were
incubated with proper amount of anti-phospho-STAT3 sepharose beads (Cell
Signaling, #4074) or anti-Flag-beads (Sigma) for 4 h at 4 °C. After wash, beads were
aliquoted equally and incubated with comparable amounts of SRC-1 protein (wt or
mutants) overnight, and the interacting protein was detected by Western-Blot.
SRC-1 WT or mutants were expressed in HEK293 cells and the amount of the
SRC-1 expressed was determined by Western-Blot before the protein interaction
assay. Comparable amounts of SRC-1 (wt or mutants) in the same volume of cell
lysates (compensated with the cell lysates from the cells transfected with empty
vector) were used for the in vitro protein interaction. Except for the THRβ IP were
equal amounts of total protein from SRC-1 WT and mutant lysates (determined by
Bradford assay (Biorad)) were incubated with equal volumes of flag-tagged
THRβ lysate overnight at 4 °C with 1 μM T3 thyroid hormone. THRβ was then
immunoprecipitated using anti-Flag conjugated beads for 1 h which were
washed 6 times with lysis buffer and eluted with LDS sample buffer before western
blotting.

Luciferase transcription activation assays: To measure STAT3 activity on
the POMC promoter, HEK293, Neuro 2A (mouse neuroblastoma cell line) and
immortalized MEF cells (generated in J.X. lab) were cultured in Dulbecco’s
modified Eagle’s medium supplemented with 10% fetal bovine serum (Atlanta),
100 IU/ml penicillin and 100 ng/ml streptomycin. Cells were seeded into a 24-well
plate overnight and then transfected with 600 ng of the Pomc-luciferase reporter
plasmid66 or 300 ng Socs3-luciferase 6T1 reporter plasmid12, combined with
100 ng of pRL-SV40 (Promega), 100 ng of pCR3.1-SRC-1 and/or 10 ng pRc/CMV-
STAT3C plasmids or the control empty plasmids, according to the Lipofectamine
LTX protocol (Invitrogen). Thirty hours post-transfection, the cells were lysed and
the luciferase activity was measured using the Dual-Luciferase® Reporter Assay
System (Promega) according to the manufacturer’s instruction.

For leptin-induced Pomc-luciferase reporter assay, a fragment of the human
POMC promoter (−949 to +416, relative to the transcription start site) was cloned
into the pGL3 Luciferase Reporter Vector by using the primer pairs: 5′-TGTTCT
AGTTGGGGGAACAGC-3′ and 5′-GCGCCCTTACCTGTCTCGG-3′. Neuro 2A
cells were cultured in 48-well plate for overnight and then transfected with 0.1 µg
human Pomc-luciferase reporter plasmid, 0.025 µg LepR and 0.05 µg hSRC-1
plasmid. Forty hours post-transfection, the cells were treated with 0.2 µg/ml Leptin
for 20 min and then kept cultured in fresh media for 6 h. To test the effect of
dominant negative STAT3 on leptin-induced POMC-luciferase reporter activity,
the above protocol was modified by cotransfecting 10 ng of the dominant negative
form of STAT3 (Y705F).

Human studies: The Genetics of Obesity Study (GOOS) is a cohort of 7000
individuals with severe early-onset obesity; age of obesity onset is less than 10
years67,68. Severe obesity is defined as a body mass index (weight in kilograms
divided by the square of the height in meters) standard deviation score greater than
3 (standard deviation scores calculated according to the UK reference population).
All studies were conducted in accordance with ethical regulations. The study
protocol was reviewed and approved by the Cambridge Local Research Ethics
Committee and each subject (or their parent for those under 16 years) provided
written informed consent; minors provided oral consent.

Exome sequencing and targeted resequencing was performed in 2548 European
ancestry individuals of the GOOS cohort (referred to as SCOOP) and in 1117
ancestry-matched controls16. Eleven rare variants (minor allele frequency <1%) in
SRC-1 were identified in this study16; another 8 variants were identified in an
earlier data release. Fifteen of these rare variants were identified in severely obese
cases and 4 in the control dataset.

Quantification and statistical analysis: The minimal sample size was pre-
determined by the nature of experiments. The actual sample size was indicated in
each figure legend. The data are presented as mean ± SEM. Statistical analyses were
performed using GraphPad Prism to evaluate normal distribution and variations
within and among groups. Methods of statistical analyses were chosen based on the
design of each experiment and are indicated in figure legends. P < 0.05 was
considered to be statistically significant.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All relevant data are available from the authors. The source data underlying Figs. 1–4 and
Supplementary Figs. 1–4 are provided as Source Data files. A Reporting Summary for this
Article is available as a Supplementary Information file.
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