97 research outputs found

    Synthesis of the Alzheimer drug Posiphen into its primary metabolic products (+)-N1-norPosiphen, (+)-N8-norPosiphen and (+)-N1, N8-bisnorPosiphen, their inhibition of amyloid precursor protein, α-Synuclein synthesis, interleukin-1β release, and cholinergic action

    Get PDF
    A major pathological hallmark of Alzheimer disease (AD) is the appearance in the brain of senile plaques that are primarily composed of aggregated forms of β-amyloid peptide (Aβ) that derive from amyloid precursor protein (APP). Posiphen (1) tartrate is an experimental AD drug in current clinical trials that reduces Aβ levels by lowering the rate of APP synthesis without toxicity. To support the clinical development of Posiphen (1) and elucidate its efficacy, its three major metabolic products, (+)-N1-norPosiphen (15), (+)-N8-norPosiphen (17) and (+)-N1, N8-bisnorPosiphen (11), were required in high chemical and optical purity. The efficient transformation of Posiphen (1) into these metabolic products, 15, 17 and 11, is described. The biological activity of these metabolites together with Posiphen (1) and its enantiomer, the AD drug candidate (-)-phenserine (2), was assessed against APP,α-synuclein and classical cholinergic targets. All the compounds potently inhibited the generation of APP and α-synuclein in neuronal cultures. In contrast, metabolites 11 and 15, and (-)-phenserine (2) but not Posiphen (1) or 17, possessed acetyl cholinesterase inhibitory action and no compounds bound either nicotinic or muscarinic receptors. As Posiphen (1) lowered CSF markers of inflammation in a recent clinical trial, the actions of 1 and 2 on proinflammatory cytokine interleukin (IL)-1β release human peripheral blood mononuclear cells was evaluated, and found to be potently inhibited by both agents

    Surface and lightning sources of nitrogen oxides over the United States: Magnitudes, chemical evolution, and outflow

    Get PDF
    We use observations from two aircraft during the ICARTT campaign over the eastern United States and North Atlantic during summer 2004, interpreted with a global 3-D model of tropospheric chemistry (GEOS-Chem) to test current understanding of regional sources, chemical evolution, and export of NOx. The boundary layer NOx data provide top-down verification of a 50% decrease in power plant and industry NOx emissions over the eastern United States between 1999 and 2004. Observed NOx concentrations at 8–12 km altitude were 0.55 ± 0.36 ppbv, much larger than in previous U.S. aircraft campaigns (ELCHEM, SUCCESS, SONEX) though consistent with data from the NOXAR program aboard commercial aircraft. We show that regional lightning is the dominant source of this upper tropospheric NOx and increases upper tropospheric ozone by 10 ppbv. Simulating ICARTT upper tropospheric NOx observations with GEOS-Chem requires a factor of 4 increase in modeled NOx yield per flash (to 500 mol/ flash). Observed OH concentrations were a factor of 2 lower than can be explained from current photochemical models, for reasons that are unclear. A NOy-CO correlation analysis of the fraction f of North American NOx emissions vented to the free troposphere as NOy (sum of NOx and its oxidation products) shows observed f = 16 ± 10% and modeled f = 14 ± 9%, consistent with previous studies. Export to the lower free troposphere is mostly HNO3 but at higher altitudes is mostly PAN. The model successfully simulates NOy export efficiency and speciation, supporting previous model estimates of a large U.S. anthropogenic contribution to global tropospheric ozone through PAN export

    Human astrocytes and microglia show augmented ingestion of synapses in Alzheimer's disease via MFG-E8

    Get PDF
    Synapse loss correlates with cognitive decline in Alzheimer's disease (AD). Data from mouse models suggests microglia are important for synapse degeneration, but direct human evidence for any glial involvement in synapse removal in human AD remains to be established. Here we observe astrocytes and microglia from human brains contain greater amounts of synaptic protein in AD compared with non-disease controls, and that proximity to amyloid-β plaques and the APOE4 risk gene exacerbate this effect. In culture, mouse and human astrocytes and primary mouse and human microglia phagocytose AD patient-derived synapses more than synapses from controls. Inhibiting interactions of MFG-E8 rescues the elevated engulfment of AD synapses by astrocytes and microglia without affecting control synapse uptake. Thus, AD promotes increased synapse ingestion by human glial cells at least in part via an MFG-E8 opsonophagocytic mechanism with potential for targeted therapeutic manipulation.</p

    Influence of lateral and top boundary conditions on regional air quality prediction: A multiscale study coupling regional and global chemical transport models

    Get PDF
    The sensitivity of regional air quality model to various lateral and top boundary conditions is studied at 2 scales: a 60 km domain covering the whole USA and a 12 km domain over northeastern USA. Three global models (MOZART-NCAR, MOZART-GFDL and RAQMS) are used to drive the STEM-2K3 regional model with time-varied lateral and top boundary conditions (BCs). The regional simulations with different global BCs are examined using ICARTT aircraft measurements performed in the summer of 2004, and the simulations are shown to be sensitive to the boundary conditions from the global models, especially for relatively long-lived species, like CO and O3. Differences in the mean CO concentrations from three different global-model boundary conditions are as large as 40 ppbv, and the effects of the BCs on CO are shown to be important throughout the troposphere, even near surface. Top boundary conditions show strong effect on O3 predictions above 4 km. Over certain model grids, the model’s sensitivity to BCs is found to depend not only on the distance from the domain’s top and lateral boundaries, downwind/upwind situation, but also on regional emissions and species properties. The near-surface prediction over polluted area is usually not as sensitive to the variation of BCs, but to the magnitude of their background concentrations. We also test the sensitivity of model to temporal and spatial variations of the BCs by comparing the simulations with time-varied BCs to the corresponding simulations with time-mean and profile BCs. Removing the time variation of BCs leads to a significant bias on the variation prediction and sometime causes the bias in predicted mean values. The effect of model resolution on the BC sensitivity is also studied

    Bioinorganic Chemistry of Alzheimer’s Disease

    Get PDF

    Meta-analysis of epigenome-wide association studies in neonates reveals widespread differential DNA methylation associated with birthweight

    Get PDF
    Birthweight is associated with health outcomes across the life course, DNA methylation may be an underlying mechanism. In this meta-analysis of epigenome-wide association studies of 8,825 neonates from 24 birth cohorts in the Pregnancy And Childhood Epigenetics Consortium, we find that DNA methylation in neonatal blood is associated with birthweight at 914 sites, with a difference in birthweight ranging from -183 to 178 grams per 10% increase in methylation (P-Bonferroni <1.06 x 10(-7)). In additional analyses in 7,278 participants,Peer reviewe

    220-to-330-GHz Manifold Triplexer With Wide Stopband Utilizing Ridged Substrate Integrated Waveguides

    No full text
    This article reports a three-channel, noncontiguous, manifold multiplexer operating from 220 to 330 GHz, a 40% fractional operating bandwidth. The structure is designed and implemented using a set of ridged substrate integrated waveguides (SIWs). The ridged SIW improves the stopband bandwidth and reduces the overall structure size by 35% over a conventional SIW design. The triplexer utilizes an organic package substrate technology developed by Intel, featuring four thick copper metal layers and continuous trench vias in lieu of standard via fences, which significantly decrease the ohmic loss of the ridged SIW waveguides. Electromagnetic-circuit modeling and codesign techniques are adopted in the development of the triplexer structure. The fabricated triplexer is measured using banded millimeter-wave wafer probing and exhibits 37 dB of insertion loss in the passbands and better than 10 dB of average return loss for each of the channel filters. The measured stopband attenuation is better than 27 dB for all three channels.Semiconductor Research Corporation (Member Specific Research Grant 2017-IN-2752
    corecore