30 research outputs found

    Assessment of funnel plot asymmetry and publication bias in reproductive health meta-analyses: an analytic survey

    Get PDF
    BACKGROUND: Despite efforts to assure high methodological standards, systematic reviews may be affected by publication bias. The objective of this study was to evaluate the occurrence of publication bias in a collection of high quality systematic reviews on reproductive health. METHODS: Systematic reviews included in the Reproductive Health Library (RHL), issue No 9, were assessed. Funnel plot was used to assess meta-analyses containing 10 or more trials reporting a binary outcome. A funnel plot, the estimated number of missing studies and the adjusted combined effect size were obtained using the "trim and fill method". Meta-analyses results that were not considered to be robust due to a possible publication bias were submitted to a more detailed assessment. RESULTS: A total of 21 systematic reviews were assessed. The number of trials comprising each one ranged from 10 to 83 (median = 13), totaling 379 trials, whose results have been summarized. None of the reviews had reported any evaluation of publication bias or funnel plot asymmetry. Some degree of asymmetry in funnel plots was observed in 18 of the 21 meta-analyses evaluated (85.7%), with the estimated number of missing studies ranging from 1 to 18 (median = 3). Only for three meta-analyses, the conclusion could not be considered robust due to a possible publication bias. CONCLUSION: Asymmetry is a frequent finding in funnel plots of meta-analyses in reproductive health, but according to the present evaluation, less than 15% of meta-analyses report conclusions that would not be considered robust. Publication bias and other sources of asymmetry in funnel plots should be systematically addressed by reproductive health meta-analysts. Next amendments in Cochrane systematic reviews should include this type of evaluation. Further studies regarding the evolution of effect size and publication bias over time in systematic reviews in reproductive health are needed

    Measures of satisfaction with care during labour and birth: a comparative review

    Get PDF
    Background Satisfaction is the one of the most frequently reported outcome measures for quality of care. Assessment of satisfaction with maternity services is crucial, and psychometrically sound measures are needed if this is to inform health practices. This paper comparatively reviews current measures of satisfaction with care during labour and birth. Methods A review of the literature was conducted. Studies were located through computerised databases and hand searching references of identified articles and reviews. Inclusion criteria were that the questionnaire was a multi-item scale of satisfaction with care during labour and birth, and some form of psychometric information (either information about questionnaire construction, or reliability, or validity) had to be reported. Results Nine questionnaires of satisfaction with care during labour and birth were identified. Instruments varied in psychometric properties and dimensions. Most described questionnaire construction and tested some form of reliability and validity. Measures were generally not based on the main theoretical models of satisfaction and varied in scope and application to different types of samples (e.g. satisfaction following caesarean section). For an in-depth measure of satisfaction with intrapartum care, the Intrapartal-Specific Quality from the Patient’s Perspective questionnaire (QPP-I) is recommended. Brief measures with good reliability and validity are provided by the Six Simple Questions (SSQ) or Perceptions of Care Adjective Checklist (PCACL-R). Conclusions Despite the interest in measures of satisfaction there are only a small number of validated measures of satisfaction with care during labour and birth. It is important that brief, reliable and valid measures are available for use in general and specific populations in order to assist research and inform practice

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate

    Get PDF
    Forest structure and dynamics vary across the Amazon Basin in an east-west gradient coincident with variations in soil fertility and geology. This has resulted in the hypothesis that soil fertility may play an important role in explaining Basin-wide variations in forest biomass, growth and stem turnover rates. Soil samples were collected in a total of 59 different forest plots across the Amazon Basin and analysed for exchangeable cations, carbon, nitrogen and pH, with several phosphorus fractions of likely different plant availability also quantified. Physical properties were additionally examined and an index of soil physical quality developed. Bivariate relationships of soil and climatic properties with above-ground wood productivity, stand-level tree turnover rates, above-ground wood biomass and wood density were first examined with multivariate regression models then applied. Both forms of analysis were undertaken with and without considerations regarding the underlying spatial structure of the dataset. Despite the presence of autocorrelated spatial structures complicating many analyses, forest structure and dynamics were found to be strongly and quantitatively related to edaphic as well as climatic conditions. Basin-wide differences in stand-level turnover rates are mostly influenced by soil physical properties with variations in rates of coarse wood production mostly related to soil phosphorus status. Total soil P was a better predictor of wood production rates than any of the fractionated organic- or inorganic-P pools. This suggests that it is not only the immediately available P forms, but probably the entire soil phosphorus pool that is interacting with forest growth on longer timescales. A role for soil potassium in modulating Amazon forest dynamics through its effects on stand-level wood density was also detected. Taking this into account, otherwise enigmatic variations in stand-level biomass across the Basin were then accounted for through the interacting effects of soil physical and chemical properties with climate. A hypothesis of self-maintaining forest dynamic feedback mechanisms initiated by edaphic conditions is proposed. It is further suggested that this is a major factor determining endogenous disturbance levels, species composition, and forest productivity across the Amazon Basin. © 2012 Author(s). CC Attribution 3.0 License

    Seasonal soil water storage changes beneath central Amazonian rainforest and pasture

    No full text
    Evaporation and infiltration were compared for tropical rainforest and pasture, near to Manaus, Brazil from October 1990 to February 1992 using measurements of soil water storage over a depth of 2 m. The soil is a clayey oxisol of low water available capacity. In both of the dry seasons studied, the maximum change in soil water storage in the forest was 154 mm and in the pasture it was 131 and 112 mm. Similar behaviour of the soil water reservoir below forest and pasture in the wet season implied that differences in evaporation and drainage were small. In the dry season, soil water storage behaviour in the upper metre of the soil was similar but there were marked differences in the second metre. The pasture took up little water from below 1.5 m but the forest appeared to utilise all of the available water in the 2 m profile in both seasons. The water balance of the 2 m profile showed that the pasture evaporation rate was equal to that of the forest until storage had decreased 80 mm from the maximum. There was then a decline in pasture evaporation rate to 1.2 mm day-1 as the storage decreased by a further 50 mm. In contrast, the forest uptake rate remained above 3.5 mm day-1 until storage had decreased 140 mm from the maximum (within 15 mm of the extraction limit), before declining abruptly to less than 1.5 mm day-1. There was strong evidence that the forest was able to abstract water from depths greater than 3.6 m. Spatial variability of soil water storage was significantly greater beneath the pasture than beneath the forest, particularly following rainfall events in the dry season. This was largely the result of redistribution of rainfall as local surface runoff. There was no evidence of redistribution or runoff in the forest. © 1995

    Interception water-partitioning dynamics for a pristine rainforest in Central Amazonia: Marked differences between normal and dry years

    No full text
    In this study, we designed and built an automated system of collection and measurement of throughfall and stemflow, developing a new sampling methodology. Throughfall was measured by trough-type system of collectors, each collector with sampling area of 5 cm × 6 m, connected every six troughs to a large tipping bucket raingauge. Our throughfall measurement system covered a larger surface area than do most commonly used randomly relocated gauges, reducing the spatial variability. Temporal resolution was high (5 min), allowing the study of the short-term dynamics of the interception process. Stemflow was collected from 65 trees and also measured by large tipping bucket raingauges. Water vapor exchange at the forest-atmosphere interface was derived from eddy covariance data from a flux tower in the same area as the interception study. During the study period (November 2002-October 2004) a mild El Niño year developed and total annual rainfall was considerably lower than the average for the region. The interception loss in the year with normal rainfall was 13.3%, compared to 22.6% of gross precipitation in the dry year. The interception difference is explained by the comparison of mean intensity and duration of events in the normal year (8.77 mm/h and 1.88 h) versus the driest year (5.36 mm/h and 2.32 h). Interception loss for the whole period represented 16.5% of the gross rainfall, with throughfall 82.9% and stemflow 0.6%. We used the analytical Gash model to estimate the interception loss. The model succeeded in capturing the variability associated to the variability in the characteristics of precipitation. This is the first study to show the variability of interception in relation to rainfall (seasonally and between years). © 2007 Elsevier B.V. All rights reserved

    The water balance of an Amazonian micro-catchment: The effect of interannual variability of rainfall on hydrological behaviour

    No full text
    In humid tropical systems, the large intraseasonal and interannual variability of rainfall can significantly affect all components of the water balance. This variability and the lack of detailed hydrological and meteorological data in both temporal and spatial scales have created uncertainties regarding the closure of the water balance for the Amazon basin. Previous studies in Amazonian micro-catchments suggested that both the unsaturated and groundwater system, which are not taken into consideration in basin-wide water budgets published in the literature, play an important role in controlling the timing of runoff generation. In this paper, the components of the water balance and the variations in different storages within the system were examined using 3 years' data from a 6.58 km2 micro-catchment in central Amazonia. The role and relative importance of the various stores were examined. The results show a strong memory effect in the groundwater system that carries over seasonal climate anomalies from one year to the next and affects the hydrological response well beyond the time span of the anomaly. In addition, the deep unsaturated zone was found to play a key role in reducing most of the intraseasonal variability and also affected the groundwater recharge. This memory effect is crucial for sustaining streamflow and evaporation in years with rainfall deficiency. The memory effect caused by storage in the groundwater and unsaturated systems may also prevent the closure of annual large-scale water balances, which assume that storage returns to a standard state each year. Copyright © 2007 John Wiley & Sons, Ltd

    Distributed hydrological modeling of a micro-scale rainforest watershed in Amazonia: model evaluation and advances in calibration using the new HAND terrain model

    No full text
    Three sections of the Asu catchment, which is located within the Cuieiras Reservation 80 km northwest of Manaus in Central Amazonia, Brazil, were gauged to create nested catchments of the first (0.95 km(2)), second (6.58 km(2)) and third (12.43 km(2)) Strahler orders. As the Cuieiras reserve contains pristine tropical rainforest, hydrological data collected in these catchments offers an opportunity to test the Distributed Hydrology Soil Vegetation Model's (DHSVM) ability to simulate hydrological responses, and to represent the spatial distribution of hydrological phenomena such as evapotranspiration, soil moisture and water table depth. Digital Elevation Model (DEM) data were obtained from the Shuttle Radar Topography Mission (SRTM) data. We used a novel approach to produce high resolution (30 m) soil and vegetation maps that enabled a representative set of relevant parameters to be acquired. These soil and vegetation maps were derived from a hydrologically normalized DEM through the HAND (Height Above the Nearest Drainage) technique, a new type of terrain model procedure. The DHSVM model was calibrated and validated using the second order watershed. To test the model's ability to represent processes at different spatial scales, the parameter set derived from the calibration was used to simulate the discharge of the first and third order streams. Model simulations of soil moisture, groundwater levels and discharge were compared with observed data and exhibited satisfactory performance overall, with the exceptions of the predicted water table depth and the underestimation of peak flows during the wet season. The results from these DHSVM runs indicate that the model is applicable to tropical forests environments (equatorial climates, lowland watersheds with deep soil), which are quite distinct from the environments for which the model was developed (temperate climates, mountainous watersheds with shallow soil). The study also demonstrated that the HAND terrain model is a useful tool for representing the spatial distributions of key hydrological parameters
    corecore