16 research outputs found

    Impact of Cholesterol on Voids in Phospholipid Membranes

    Full text link
    Free volume pockets or voids are important to many biological processes in cell membranes. Free volume fluctuations are a prerequisite for diffusion of lipids and other macromolecules in lipid bilayers. Permeation of small solutes across a membrane, as well as diffusion of solutes in the membrane interior are further examples of phenomena where voids and their properties play a central role. Cholesterol has been suggested to change the structure and function of membranes by altering their free volume properties. We study the effect of cholesterol on the properties of voids in dipalmitoylphosphatidylcholine (DPPC) bilayers by means of atomistic molecular dynamics simulations. We find that an increasing cholesterol concentration reduces the total amount of free volume in a bilayer. The effect of cholesterol on individual voids is most prominent in the region where the steroid ring structures of cholesterol molecules are located. Here a growing cholesterol content reduces the number of voids, completely removing voids of the size of a cholesterol molecule. The voids also become more elongated. The broad orientational distribution of voids observed in pure DPPC is, with a 30% molar concentration of cholesterol, replaced by a distribution where orientation along the bilayer normal is favored. Our results suggest that instead of being uniformly distributed to the whole bilayer, these effects are localized to the close vicinity of cholesterol molecules

    Differential Responses of Escherichia coli Cells Expressing Cytoplasmic Domain Mutants of Penicillin-Binding Protein 1b after Impairment of Penicillin-Binding Proteins 1a and 3

    No full text
    Penicillin-binding protein 1b (PBP1b) is the major high-molecular-weight PBP in Escherichia coli. Although it is coded by a single gene, it is usually found as a mixture of three isoforms which vary with regard to the length of their N-terminal cytoplasmic tail. We show here that although the cytoplasmic tail seems to play no role in the dimerization of PBP1b, as was originally suspected, only the full-length protein is able to protect the cells against lysis when both PBP1a and PBP3 are inhibited by antibiotics. This suggests a specific role for the full-length PBP1b in the multienzyme peptidoglycan-synthesizing complex that cannot be fulfilled by either PBP1a or the shorter PBP1b proteins. Moreover, we have shown by alanine-stretch-scanning mutagenesis that (i) residues R(11) to G(13) are major determinants for correct translocation and folding of PBP1b and that (ii) the specific interactions involving the full-length PBP1b can be ascribed to the first six residues at the N-terminal end of the cytoplasmic domain. These results are discussed in terms of the interactions with other components of the murein-synthesizing complex

    The integral membrane FtsW protein and peptidoglycan synthase PBP3 form a subcomplex in Escherichia coli

    Full text link
    During the cell cycle of rod-shaped bacteria, two morphogenetic processes can be discriminated: length growth of the cylindrical part of the cell and cell division by formation of two new cell poles. The morphogenetic protein complex responsible for the septation during cell division (the divisome) includes class A and class B penicillin-binding proteins (PBPs). In Escherichia coli, the class B PBP3 is specific for septal peptidoglycan synthesis. It requires the putative lipid II flippase FtsW for its localization at the division site and is necessary for the midcell localization of the class A PBP1B. In this work we show direct interactions between FtsW and PBP3 in vivo and in vitro by FRET (Förster resonance energy transfer) and co-immunoprecipitation experiments. These proteins are able to form a discrete complex independently of the other cell-division proteins. The K2-V42 peptide of PBP3 containing the membrane-spanning sequence is a structural determinant sufficient for interaction with FtsW and for PBP3 dimerization. By using a two-hybrid assay, the class A PBP1B was shown to interact with FtsW. However, it could not be detected in the immunoprecipitated FtsW-PBP3 complex. The periplasmic loop 9/10 of FtsW appeared to be involved in the interaction with both PBP1B and PBP3. It might play an important role in the positioning of these proteins within the divisome

    Interaction of the transmembrane domain of lysis protein E from bacteriophage phi X174 with bacterial translocase MraY and peptidyi-prolyl isomerase SlyD

    No full text
    The molecular target for the bacteriolytic E protein from bacteriophage phi Chi 174, responsible for host cell lysis, is known to be the enzyme phospho-MurNAc-pentapeptide translocase (MraY), an integral membrane protein involved in bacterial cell wall peptidoglycan biosynthesis, with an essential role being played by peptidyl-prolyl isomerase SlyD. A synthetic 37 aa peptide E-pep, containing the N-terminal transmembrane alpha-helix of E, was found to be bacteriolytic against Bacillus licheniformis, and inhibited membrane-bound MraY. The solution conformation of E-pep was found by circular dichroism (CD) spectroscopy to be 100% alpha-helical. No change in the CD spectrum was observed upon addition of purified Escherichia coli SlyD, implying that SlyD does not catalyse prolyl isomerization upon E. However, E-pep was found to be a potent inhibitor of SlyD-catalysed peptidylprolyl isomerization (IC50 0.15 mu M), implying a strong interaction between E and SlyD. E-pep was found to inhibit E coli MraY activity when assayed in membranes (IC50 0.8 mu M); however, no inhibition of solubilized MraY was observed, unlike nucleoside natural product inhibitor tunicamycin. These results imply that the interaction of E with MraY is not at the MraY active site, and suggest that a protein-protein interaction is formed between E and MraY at a site within the transmembrane region
    corecore