44 research outputs found

    Rabaptin5 is recruited to endosomes by Rab4 and Rabex5 to regulate endosome maturation

    Get PDF
    Rab GTPases control membrane identity, fusion, and transport by interaction with effector proteins. Effectors that influence the activation/inactivation cycle of their own or other Rabs contribute to the timely conversion of Rab identities. Rab5 and its effector Rabaptin5 are generally considered the prime example for a positive feedback loop in which Rab5·GTP recruits Rabaptin5 complexed to Rabex5, the GDP/GTP exchange factor of Rab5, to early endosomes, thus maintaining the membrane's Rab5 identity. By deletion analysis, we found membrane recruitment of Rabaptin5 to require binding to Rab4 and Rabex5, but not Rab5. Deletion of either one of two Rab5 binding domains or silencing of Rab5 expression did not affect Rabaptin5 recruitment, but produced giant endosomes with early and late endosomal characteristics. The results contradict feedback activation of Rab5 and instead indicate that Rabaptin5 is recruited by Rabex5 recognizing ubiquitinated cargo and by Rab4 to activate Rab5 in a feed-forward manner

    Scaling of curvature in sub-critical gravitational collapse

    Get PDF
    We perform numerical simulations of the gravitational collapse of a spherically symmetric scalar field. For those data that just barely do not form black holes we find the maximum curvature at the position of the central observer. We find a scaling relation between this maximum curvature and distance from the critical solution. The scaling relation is analogous to that found by Choptuik for black hole mass for those data that do collapse to form black holes. We also find a periodic wiggle in the scaling exponent.Comment: Revtex, 2 figures, Discussion modified, to appear in Phys. Rev.

    Relativistic MHD with Adaptive Mesh Refinement

    Get PDF
    This paper presents a new computer code to solve the general relativistic magnetohydrodynamics (GRMHD) equations using distributed parallel adaptive mesh refinement (AMR). The fluid equations are solved using a finite difference Convex ENO method (CENO) in 3+1 dimensions, and the AMR is Berger-Oliger. Hyperbolic divergence cleaning is used to control the ∇⋅B=0\nabla\cdot {\bf B}=0 constraint. We present results from three flat space tests, and examine the accretion of a fluid onto a Schwarzschild black hole, reproducing the Michel solution. The AMR simulations substantially improve performance while reproducing the resolution equivalent unigrid simulation results. Finally, we discuss strong scaling results for parallel unigrid and AMR runs.Comment: 24 pages, 14 figures, 3 table

    Scale invariance and critical gravitational collapse

    Get PDF
    We examine ways to write the Choptuik critical solution as the evolution of scale invariant variables. It is shown that a system of scale invariant variables proposed by one of the authors does not evolve periodically in the Choptuik critical solution. We find a different system, based on maximal slicing. This system does evolve periodically, and may generalize to the case of axisymmetry or of no symmetry at all.Comment: 7 pages, 3 figures, Revtex, discussion modified to clarify presentatio

    Electrical conductivity during incipient melting in the oceanic low-velocity zone

    Get PDF
    International audienceThe low-viscosity layer in the upper mantle, the asthenosphere, is a requirement for plate tectonics1. The seismic low velocities and the high electrical conductivities of the asthenosphere are attributed either to subsolidus, water-related defects in olivine minerals2, 3, 4 or to a few volume per cent of partial melt5, 6, 7, 8, but these two interpretations have two shortcomings. First, the amount of water stored in olivine is not expected to be higher than 50 parts per million owing to partitioning with other mantle phases9 (including pargasite amphibole at moderate temperatures10) and partial melting at high temperatures9. Second, elevated melt volume fractions are impeded by the temperatures prevailing in the asthenosphere, which are too low, and by the melt mobility, which is high and can lead to gravitational segregation11, 12. Here we determine the electrical conductivity of carbon-dioxide-rich and water-rich melts, typically produced at the onset of mantle melting. Electrical conductivity increases modestly with moderate amounts of water and carbon dioxide, but it increases drastically once the carbon dioxide content exceeds six weight per cent in the melt. Incipient melts, long-expected to prevail in the asthenosphere10, 13, 14, 15, can therefore produce high electrical conductivities there. Taking into account variable degrees of depletion of the mantle in water and carbon dioxide, and their effect on the petrology of incipient melting, we calculated conductivity profiles across the asthenosphere for various tectonic plate ages. Several electrical discontinuities are predicted and match geophysical observations in a consistent petrological and geochemical framework. In moderately aged plates (more than five million years old), incipient melts probably trigger both the seismic low velocities and the high electrical conductivities in the upper part of the asthenosphere, whereas in young plates4, where seamount volcanism occurs6, a higher degree of melting is expected

    Relativistic MHD and black hole excision: Formulation and initial tests

    Full text link
    A new algorithm for solving the general relativistic MHD equations is described in this paper. We design our scheme to incorporate black hole excision with smooth boundaries, and to simplify solving the combined Einstein and MHD equations with AMR. The fluid equations are solved using a finite difference Convex ENO method. Excision is implemented using overlapping grids. Elliptic and hyperbolic divergence cleaning techniques allow for maximum flexibility in choosing coordinate systems, and we compare both methods for a standard problem. Numerical results of standard test problems are presented in two-dimensional flat space using excision, overlapping grids, and elliptic and hyperbolic divergence cleaning.Comment: 22 pages, 8 figure

    High ALDH Activity Identifies Chemotherapy-Resistant Ewing's Sarcoma Stem Cells That Retain Sensitivity to EWS-FLI1 Inhibition

    Get PDF
    Cancer stem cells are a chemotherapy-resistant population capable of self-renewal and of regenerating the bulk tumor, thereby causing relapse and patient death. Ewing's sarcoma, the second most common form of bone tumor in adolescents and young adults, follows a clinical pattern consistent with the Cancer Stem Cell model - remission is easily achieved, even for patients with metastatic disease, but relapse remains frequent and is usually fatal.We have isolated a subpopulation of Ewing's sarcoma cells, from both human cell lines and human xenografts grown in immune deficient mice, which express high aldehyde dehydrogenase (ALDH(high)) activity and are enriched for clonogenicity, sphere-formation, and tumor initiation. The ALDH(high) cells are resistant to chemotherapy in vitro, but this can be overcome by the ATP binding cassette transport protein inhibitor, verapamil. Importantly, these cells are not resistant to YK-4-279, a small molecule inhibitor of EWS-FLI1 that is selectively toxic to Ewing's sarcoma cells both in vitro and in vivo.Ewing's sarcoma contains an ALDH(high) stem-like population of chemotherapy-resistant cells that retain sensitivity to EWS-FLI1 inhibition. Inhibiting the EWS-FLI1 oncoprotein may prove to be an effective means of improving patient outcomes by targeting Ewing's sarcoma stem cells that survive standard chemotherapy

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & NemĂ©sio 2007; Donegan 2008, 2009; NemĂ©sio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016
    corecore