77 research outputs found

    Transient down-regulation of beta1 integrin subtypes on kidney carcinoma cells is induced by mechanical contact with endothelial cell membranes

    Get PDF
    Adhesion molecules of the integrin beta1 family are thought to be involved in the malignant progression renal cell carcinoma (RCC). Still, it is not clear how they contribute to this process. Since the hematogenous phase of tumour dissemination is the rate-limiting step in the metastatic process, we explored beta1 integrin alterations on several RCC cell lines (A498, Caki1, KTC26) before and after contacting vascular endothelium in a tumour-endothelium (HUVEC) co-culture assay. Notably, alpha2, alpha3 and alpha5 integrins became down-regulated immediately after the tumour cells attached to HUVEC, followed by re-expression shortly thereafter. Integrin down-regulation on RCC cells was caused by direct contact with endothelial cells, since the isolated endothelial membrane fragments but not the cell culture supernatant contributed to the observed effects. Integrin loss was accompanied by a reduced focal adhesion kinase (FAK) expression, FAK activity and diminished binding of tumour cells to matrix proteins. Furthermore, intracellular signalling proteins RCC cells were altered in the presence of HUVEC membrane fragments, in particular 14-3-3 epsilon, ERK2, PKCdelta, PKCepsilon and RACK1, which are involved in regulating tumour cell motility. We, therefore, speculate that contact of RCC cells with the vascular endothelium converts integrin-dependent adhesion to integrin-independent cell movement. The process of dynamic integrin regulation may be an important part in tumour cell migration strategy, switching the cells from being adhesive to becoming motile and invasive

    Efficient Surveillance of Plasmodium knowlesi Genetic Subpopulations, Malaysian Borneo, 2000-2018.

    Get PDF
    Population genetic analysis revealed that Plasmodium knowlesi infections in Malaysian Borneo are caused by 2 divergent parasites associated with long-tailed (cluster 1) and pig-tailed (cluster 2) macaques. Because the transmission ecology is likely to differ for each macaque species, we developed a simple genotyping PCR to efficiently distinguish between and survey the 2 parasite subpopulations. This assay confirmed differences in the relative proportions in areas of Kapit division of Sarawak state, consistent with multilocus microsatellite analyses. Analyses of 1,204 human infections at Kapit Hospital showed that cluster 1 caused approximately two thirds of cases with no significant temporal changes from 2000 to 2018. We observed an apparent increase in overall numbers in the most recent 2 years studied, driven mainly by increased cluster 1 parasite infections. Continued monitoring of the frequency of different parasite subpopulations and correlation with environmental alterations are necessary to determine whether the epidemiology will change substantially

    Genetic studies of hypertrophic cardiomyopathy in Singaporeans identify variants in TNNI3 and TNNT2 that are common in Chinese patients

    Get PDF
    Background - To assess the genetic architecture of hypertrophic cardiomyopathy (HCM) in patients of predominantly Chinese ancestry. Methods - We sequenced HCM disease genes in Singaporean patients (n=224) and Singaporean controls (n=3,634), compared findings with additional populations and Caucasian HCM cohorts (n=6,179) and performed in vitro functional studies. Results - Singaporean HCM patients had significantly fewer confidently interpreted HCM disease variants (Pathogenic (P)/Likely Pathogenic (LP):18%, p<0.0001) but an excess of variants of unknown significance (exVUS: 24%, p<0.0001), as compared to Caucasians (P/LP: 31%, exVUS: 7%). Two missense variants in thin filament encoding genes were commonly seen in Singaporean HCM (TNNI3:p.R79C, disease allele frequency (AF)=0.018; TNNT2:p.R286H, disease AF=0.022) and are enriched in Singaporean HCM when compared with Asian controls (TNNI3:p.R79C, Singaporean controls AF=0.0055, p=0.0057, gnomAD-East Asian (gnomAD-EA) AF=0.0062, p=0.0086; TNNT2:p.R286H, Singaporean controls AF=0.0017, p<0.0001, gnomAD-EA AF=0.0009, p<0.0001). Both these variants have conflicting annotations in ClinVar and are of low penetrance (TNNI3:p.R79C, 0.7%; TNNT2:p.R286H, 2.7%) but are predicted to be deleterious by computational tools. In population controls, TNNI3:p.R79C carriers had significantly thicker left ventricular walls compared to non-carriers while its etiological fraction is limited (0.70, 95% CI: 0.35-0.86) and thus TNNI3:p.R79C is considered a VUS. Mutant TNNT2:p.R286H iPSC-CMs show hypercontractility, increased metabolic requirements and cellular hypertrophy and the etiological fraction (0.93, 95% CI: 0.83-0.97) support the likely pathogenicity of TNNT2:p.R286H. Conclusions - As compared to Caucasians, Chinese HCM patients commonly have low penetrance risk alleles in TNNT2 or TNNI3 but exhibit few clinically actionable HCM variants overall. This highlights the need for greater study of HCM genetics in non-Caucasian populations

    SCFAs Induce Mouse Neutrophil Chemotaxis through the GPR43 Receptor

    Get PDF
    Short chain fatty acids (SCFAs) have recently attracted attention as potential mediators of the effects of gut microbiota on intestinal inflammation. Some of these effects have been suggested to occur through the direct actions of SCFAs on the GPR43 receptor in neutrophils, though the precise role of this receptor in neutrophil activation is still unclear. We show that mouse bone marrow derived neutrophils (BMNs) can chemotax effectively through polycarbonate filters towards a source of acetate, propionate or butyrate. Moreover, we show that BMNs move with good speed and directionality towards a source of propionate in an EZ-Taxiscan chamber coated with fibrinogen. These effects of SCFAs were mimicked by low concentrations of the synthetic GPR43 agonist phenylacetamide-1 and were abolished in GPR43−/− BMNs. SCFAs and phenylacetamide-1 also elicited GPR43-dependent activation of PKB, p38 and ERK and these responses were sensitive to pertussis toxin, indicating a role for Gi proteins. Phenylacetamide-1 also elicited rapid and transient activation of Rac1/2 GTPases and phosphorylation of ribosomal protein S6. Genetic and pharmacological intervention identified important roles for PI3Kγ, Rac2, p38 and ERK, but not mTOR, in GPR43-dependent chemotaxis. These results identify GPR43 as a bona fide chemotactic receptor for neutrophils in vitro and start to define important elements in its signal transduction pathways

    Climate-Based Models for Understanding and Forecasting Dengue Epidemics

    Get PDF
    Dengue fever is a major public health problem in the tropics and subtropics. Since no vaccine exists, understanding and predicting outbreaks remain of crucial interest. Climate influences the mosquito-vector biology and the viral transmission cycle. Its impact on dengue dynamics is of growing interest. We analyzed the epidemiology of dengue in Noumea (New Caledonia) from 1971 to 2010 and its relationships with local and remote climate conditions using an original approach combining a comparison of epidemic and non epidemic years, bivariate and multivariate analyses. We found that the occurrence of outbreaks in Noumea was strongly influenced by climate during the last forty years. Efficient models were developed to estimate the yearly risk of outbreak as a function of two meteorological variables that were contemporaneous (explicative model) or prior (predictive model) to the outbreak onset. Local threshold values of maximal temperature and relative humidity were identified. Our results provide new insights to understand the link between climate and dengue outbreaks, and have a substantial impact on dengue management in New Caledonia since the health authorities have integrated these models into their decision making process and vector control policies. This raises the possibility to provide similar early warning systems in other countries

    Innate Immune Recognition of Yersinia pseudotuberculosis Type III Secretion

    Get PDF
    Specialized protein translocation systems are used by many bacterial pathogens to deliver effector proteins into host cells that interfere with normal cellular functions. How the host immune system recognizes and responds to this intrusive event is not understood. To address these questions, we determined the mammalian cellular response to the virulence-associated type III secretion system (T3SS) of the human pathogen Yersinia pseudotuberculosis. We found that macrophages devoid of Toll-like receptor (TLR) signaling regulate expression of 266 genes following recognition of the Y. pseudotuberculosis T3SS. This analysis revealed two temporally distinct responses that could be separated into activation of NFκB- and type I IFN-regulated genes. Extracellular bacteria were capable of triggering these signaling events, as inhibition of bacterial uptake had no effect on the ensuing innate immune response. The cytosolic peptidoglycan sensors Nod1 and Nod2 and the inflammasome component caspase-1 were not involved in NFκB activation following recognition of the Y. pseudotuberculosis T3SS. However, caspase-1 was required for secretion of the inflammatory cytokine IL-1β in response to T3SS-positive Y. pseudotuberculosis. In order to characterize the bacterial requirements for induction of this novel TLR-, Nod1/2-, and caspase-1-independent response, we used Y. pseudotuberculosis strains lacking specific components of the T3SS. Formation of a functional T3SS pore was required, as bacteria expressing a secretion needle, but lacking the pore-forming proteins YopB or YopD, did not trigger these signaling events. However, nonspecific membrane disruption could not recapitulate the NFκB signaling triggered by Y. pseudotuberculosis expressing a functional T3SS pore. Although host cell recognition of the T3SS did not require known translocated substrates, the ensuing response could be modulated by effectors such as YopJ and YopT, as YopT amplified the response, while YopJ dampened it. Collectively, these data suggest that combined recognition of the T3SS pore and YopBD-mediated delivery of immune activating ligands into the host cytosol informs the host cell of pathogenic challenge. This leads to a unique, multifactorial response distinct from the canonical immune response to a bacterium lacking a T3SS

    Protection from ultraviolet damage and photocarcinogenesis by vitamin d compounds

    Get PDF
    © Springer Nature Switzerland AG 2020. Exposure of skin cells to UV radiation results in DNA damage, which if inadequately repaired, may cause mutations. UV-induced DNA damage and reactive oxygen and nitrogen species also cause local and systemic suppression of the adaptive immune system. Together, these changes underpin the development of skin tumours. The hormone derived from vitamin D, calcitriol (1,25-dihydroxyvitamin D3) and other related compounds, working via the vitamin D receptor and at least in part through endoplasmic reticulum protein 57 (ERp57), reduce cyclobutane pyrimidine dimers and oxidative DNA damage in keratinocytes and other skin cell types after UV. Calcitriol and related compounds enhance DNA repair in keratinocytes, in part through decreased reactive oxygen species, increased p53 expression and/or activation, increased repair proteins and increased energy availability in the cell when calcitriol is present after UV exposure. There is mitochondrial damage in keratinocytes after UV. In the presence of calcitriol, but not vehicle, glycolysis is increased after UV, along with increased energy-conserving autophagy and changes consistent with enhanced mitophagy. Reduced DNA damage and reduced ROS/RNS should help reduce UV-induced immune suppression. Reduced UV immune suppression is observed after topical treatment with calcitriol and related compounds in hairless mice. These protective effects of calcitriol and related compounds presumably contribute to the observed reduction in skin tumour formation in mice after chronic exposure to UV followed by topical post-irradiation treatment with calcitriol and some, though not all, related compounds

    Laparoscopy in management of appendicitis in high-, middle-, and low-income countries: a multicenter, prospective, cohort study.

    Get PDF
    BACKGROUND: Appendicitis is the most common abdominal surgical emergency worldwide. Differences between high- and low-income settings in the availability of laparoscopic appendectomy, alternative management choices, and outcomes are poorly described. The aim was to identify variation in surgical management and outcomes of appendicitis within low-, middle-, and high-Human Development Index (HDI) countries worldwide. METHODS: This is a multicenter, international prospective cohort study. Consecutive sampling of patients undergoing emergency appendectomy over 6 months was conducted. Follow-up lasted 30 days. RESULTS: 4546 patients from 52 countries underwent appendectomy (2499 high-, 1540 middle-, and 507 low-HDI groups). Surgical site infection (SSI) rates were higher in low-HDI (OR 2.57, 95% CI 1.33-4.99, p = 0.005) but not middle-HDI countries (OR 1.38, 95% CI 0.76-2.52, p = 0.291), compared with high-HDI countries after adjustment. A laparoscopic approach was common in high-HDI countries (1693/2499, 67.7%), but infrequent in low-HDI (41/507, 8.1%) and middle-HDI (132/1540, 8.6%) groups. After accounting for case-mix, laparoscopy was still associated with fewer overall complications (OR 0.55, 95% CI 0.42-0.71, p < 0.001) and SSIs (OR 0.22, 95% CI 0.14-0.33, p < 0.001). In propensity-score matched groups within low-/middle-HDI countries, laparoscopy was still associated with fewer overall complications (OR 0.23 95% CI 0.11-0.44) and SSI (OR 0.21 95% CI 0.09-0.45). CONCLUSION: A laparoscopic approach is associated with better outcomes and availability appears to differ by country HDI. Despite the profound clinical, operational, and financial barriers to its widespread introduction, laparoscopy could significantly improve outcomes for patients in low-resource environments. TRIAL REGISTRATION: NCT02179112
    corecore