90 research outputs found

    Costa Rica Rift hole deepened and logged

    Get PDF
    During Leg 111 of the Ocean Drilling Program, scientists on the drilling vessel JOIDES Resolution studied crustal structure and hydrothermal processes in the eastern equatorial Pacific. Leg 111 spent 43 days on its primary objective, deepening and logging Hole 5048, a deep reference hole in 5.9-million-year-old crust 200 km south of the spreading axis of the Costa Rica Rift. Even before Leg 111 , Hole 5048 was the deepest hole drilled into the oceanic crust, penetrating 274.5 m of sediments and 1,075.5 m of pillow lavas and sheeted dikes to a total depth of 1,350 m below sea floor (mbsf). Leg 111 deepened the hole by 212.3 m to a total depth of 1,562.3 mbsf (1,287.8 m into basement), and completed a highly successful suite of geophysical logs and experiments, including sampling of borehole waters

    Increased Expression of the Auxiliary β(2)-subunit of Ventricular L-type Ca(2+) Channels Leads to Single-Channel Activity Characteristic of Heart Failure

    Get PDF
    BACKGROUND: Increased activity of single ventricular L-type Ca(2+)-channels (L-VDCC) is a hallmark in human heart failure. Recent findings suggest differential modulation by several auxiliary β-subunits as a possible explanation. METHODS AND RESULTS: By molecular and functional analyses of human and murine ventricles, we find that enhanced L-VDCC activity is accompanied by altered expression pattern of auxiliary L-VDCC β-subunit gene products. In HEK293-cells we show differential modulation of single L-VDCC activity by coexpression of several human cardiac β-subunits: Unlike β(1) or β(3) isoforms, β(2a) and β(2b) induce a high-activity channel behavior typical of failing myocytes. In accordance, β(2)-subunit mRNA and protein are up-regulated in failing human myocardium. In a model of heart failure we find that mice overexpressing the human cardiac Ca(V)1.2 also reveal increased single-channel activity and sarcolemmal β(2) expression when entering into the maladaptive stage of heart failure. Interestingly, these animals, when still young and non-failing (“Adaptive Phase”), reveal the opposite phenotype, viz : reduced single-channel activity accompanied by lowered β(2) expression. Additional evidence for the cause-effect relationship between β(2)-subunit expression and single L-VDCC activity is provided by newly engineered, double-transgenic mice bearing both constitutive Ca(V)1.2 and inducible β(2) cardiac overexpression. Here in non-failing hearts induction of β(2)-subunit overexpression mimicked the increase of single L-VDCC activity observed in murine and human chronic heart failure. CONCLUSIONS: Our study presents evidence of the pathobiochemical relevance of β(2)-subunits for the electrophysiological phenotype of cardiac L-VDCC and thus provides an explanation for the single L-VDCC gating observed in human and murine heart failure

    Ancient DNA suggests modern wolves trace their origin to a late Pleistocene expansion from Beringia.

    Get PDF
    Grey wolves (Canis lupus) are one of the few large terrestrial carnivores that have maintained a wide geographic distribution across the Northern Hemisphere throughout the Pleistocene and Holocene. Recent genetic studies have suggested that, despite this continuous presence, major demographic changes occurred in wolf populations between the late Pleistocene and early Holocene, and that extant wolves trace their ancestry to a single late Pleistocene population. Both the geographic origin of this ancestral population and how it became widespread remain unknown. Here, we used a spatially and temporally explicit modelling framework to analyse a dataset of 90 modern and 45 ancient mitochondrial wolf genomes from across the Northern Hemisphere, spanning the last 50,000 years. Our results suggest that contemporary wolf populations trace their ancestry to an expansion from Beringia at the end of the Last Glacial Maximum, and that this process was most likely driven by Late Pleistocene ecological fluctuations that occurred across the Northern Hemisphere. This study provides direct ancient genetic evidence that long-range migration has played an important role in the population history of a large carnivore, and provides an insight into how wolves survived the wave of megafaunal extinctions at the end of the last glaciation. Moreover, because late Pleistocene grey wolves were the likely source from which all modern dogs trace their origins, the demographic history described in this study has fundamental implications for understanding the geographical origin of the dog.L.L., K.D. and G.L. were supported by the Natural Environment Research Council, UK (grant numbers NE/K005243/1, NE/K003259/1); LL was also supported by the European Research Council grant (339941‐ADAPT); A.M. and A.E. were supported by the European Research Council Consolidator grant (grant number 647787‐LocalAdaptation); L.F. and G.L. were supported by the European Research Council grant (ERC‐2013‐StG 337574‐UNDEAD); T.G. was supported by a European Research Council Consolidator grant (681396‐Extinction Genomics) & Lundbeck Foundation grant (R52‐5062); O.T. was supported by the National Science Center, Poland (2015/19/P/NZ7/03971), with funding from EU's Horizon 2020 programme under the Marie Skłodowska‐Curie grant agreement (665778) and Synthesys Project (BETAF 3062); V.P., E.P. and P.N. were supported by the Russian Science Foundation grant (N16‐18‐10265 RNF); A.P. was supported by the Max Planck Society; M.L‐G. was supported by a Czech Science Foundation grant (GAČR15‐06446S)

    GTPase Activity and Neuronal Toxicity of Parkinson's Disease–Associated LRRK2 Is Regulated by ArfGAP1

    Get PDF
    Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common cause of autosomal dominant familial Parkinson's disease (PD) and also contribute to idiopathic PD. LRRK2 encodes a large multi-domain protein with GTPase and kinase activity. Initial data indicates that an intact functional GTPase domain is critically required for LRRK2 kinase activity. PD–associated mutations in LRRK2, including the most common G2019S variant, have variable effects on enzymatic activity but commonly alter neuronal process morphology. The mechanisms underlying the intrinsic and extrinsic regulation of LRRK2 GTPase and kinase activity, and the pathogenic effects of familial mutations, are incompletely understood. Here, we identify a novel functional interaction between LRRK2 and ADP-ribosylation factor GTPase-activating protein 1 (ArfGAP1). LRRK2 and ArfGAP1 interact in vitro in mammalian cells and in vivo in brain, and co-localize in the cytoplasm and at Golgi membranes. PD–associated and functional mutations that alter the GTPase activity of LRRK2 modulate the interaction with ArfGAP1. The GTP hydrolysis activity of LRRK2 is markedly enhanced by ArfGAP1 supporting a role for ArfGAP1 as a GTPase-activating protein for LRRK2. Unexpectedly, ArfGAP1 promotes the kinase activity of LRRK2 suggesting a potential role for GTP hydrolysis in kinase activation. Furthermore, LRRK2 robustly and directly phosphorylates ArfGAP1 in vitro. Silencing of ArfGAP1 expression in primary cortical neurons rescues the neurite shortening phenotype induced by G2019S LRRK2 overexpression, whereas the co-expression of ArfGAP1 and LRRK2 synergistically promotes neurite shortening in a manner dependent upon LRRK2 GTPase activity. Neurite shortening induced by ArfGAP1 overexpression is also attenuated by silencing of LRRK2. Our data reveal a novel role for ArfGAP1 in regulating the GTPase activity and neuronal toxicity of LRRK2; reciprocally, LRRK2 phosphorylates ArfGAP1 and is required for ArfGAP1 neuronal toxicity. ArfGAP1 may represent a promising target for interfering with LRRK2-dependent neurodegeneration in familial and sporadic PD

    Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension

    Get PDF
    High blood pressure is a major risk factor for cardiovascular disease and premature death. However, there is limited knowledge on specific causal genes and pathways. To better understand the genetics of blood pressure, we genotyped 242,296 rare, low-frequency and common genetic variants in up to ~192,000 individuals, and used ~155,063 samples for independent replication. We identified 31 novel blood pressure or hypertension associated genetic regions in the general population, including three rare missense variants in RBM47, COL21A1 and RRAS with larger effects (>1.5mmHg/allele) than common variants. Multiple rare, nonsense and missense variant associations were found in A2ML1 and a low-frequency nonsense variant in ENPEP was identified. Our data extend the spectrum of allelic variation underlying blood pressure traits and hypertension, provide new insights into the pathophysiology of hypertension and indicate new targets for clinical intervention

    The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals

    Get PDF
    To dissect the genetic architecture of blood pressure and assess effects on target-organ damage, we analyzed 128,272 SNPs from targeted and genome-wide arrays in 201,529 individuals of European ancestry and genotypes from an additional 140,886 individuals were used for validation. We identified 66 blood pressure loci, of which 17 were novel and 15 harbored multiple distinct association signals. The 66 index SNPs were enriched for cis-regulatory elements, particularly in vascular endothelial cells, consistent with a primary role in blood pressure control through modulation of vascular tone across multiple tissues. The 66 index SNPs combined in a risk score showed comparable effects in 64,421 individuals of non-European descent. The 66-SNP blood pressure risk score was significantly associated with target-organ damage in multiple tissues, with minor effects in the kidney. Our findings expand current knowledge of blood pressure pathways and highlight tissues beyond the classic renal system in blood pressure regulation

    Comparative Composition, Diversity and Trophic Ecology of Sediment Macrofauna at Vents, Seeps and Organic Falls

    Get PDF
    Sediments associated with hydrothermal venting, methane seepage and large organic falls such as whale, wood and plant detritus create deep-sea networks of soft-sediment habitats fueled, at least in part, by the oxidation of reduced chemicals. Biological studies at deep-sea vents, seeps and organic falls have looked at macrofaunal taxa, but there has yet to be a systematic comparison of the community-level attributes of sediment macrobenthos in various reducing ecosystems. Here we review key similarities and differences in the sediment-dwelling assemblages of each system with the goals of (1) generating a predictive framework for the exploration and study of newly identified reducing habitats, and (2) identifying taxa and communities that overlap across ecosystems. We show that deep-sea seep, vent and organic-fall sediments are highly heterogeneous. They sustain different geochemical and microbial processes that are reflected in a complex mosaic of habitats inhabited by a mixture of specialist (heterotrophic and symbiont-associated) and background fauna. Community-level comparisons reveal that vent, seep and organic-fall macrofauna are very distinct in terms of composition at the family level, although they share many dominant taxa among these highly sulphidic habitats. Stress gradients are good predictors of macrofaunal diversity at some sites, but habitat heterogeneity and facilitation often modify community structure. The biogeochemical differences across ecosystems and within habitats result in wide differences in organic utilization (i.e., food sources) and in the prevalence of chemosynthesis-derived nutrition. In the Pacific, vents, seeps and organic-falls exhibit distinct macrofaunal assemblages at broad-scales contributing to ß diversity. This has important implications for the conservation of reducing ecosystems, which face growing threats from human activities

    Association of vitamin D status with arterial blood pressure and hypertension risk : a mendelian randomisation study

    Get PDF
    Peer reviewe
    corecore