1,409 research outputs found
Recommended from our members
Methane emissions inventory verification in southern California
Methane (CH4) and carbon monoxide (CO) mixing ratios were measured at an air quality monitoring station near the Mt. Wilson (MW) Observatory in southern California starting in the spring of 2007. Diurnal variation and mixing ratio correlation (R2 = 0.81) were observed. The correlation results observed agree with previous aircraft measurements collected over the greater Los Angeles (LA) metropolitan area. The consistent agreement between CH4 and CO indicates these gases are well-mixed before reaching the sampling site and the emission source contributions of both compounds are reasonably constant. Since CH4 and CO are considered non-reactive on the time scale of dispersion within the LA urban area and their emission sources are likely to be similarly distributed (e.g., associated with human activities) they are subject to similar scales of atmospheric transport and dilution. This behavior allows the relationship of CH4 and CO to be applied for estimation of CH4 emissions using well-documented CO emissions. Applying this relationship a "top-down" CH4 inventory was calculated for LA County based on the measurements observed at MW and compared with the California Air Resources Board (CARB) "bottom-up" CH4 emissions inventory based on the Intergovernmental Panel on Climate Change recommended methodologies. The "top-down" CH4 emissions inventory is approximately one-third greater than CARB's "bottom-up" inventory for LA County. Considering the uncertainties in both methodologies, the different CH4 emissions inventory approaches are in good agreement, although some under and/or uninventoried CH4 sources may exist
An evaluation of the Goddard Space Flight Center Library
The character and degree of coincidence between the current and future missions, programs, and projects of the Goddard Space Flight Center and the current and future collection, services, and facilities of its library were determined from structured interviews and discussions with various classes of facility personnel. In addition to the tabulation and interpretation of the data from the structured interview survey, five types of statistical analyses were performed to corroborate (or contradict) the survey results and to produce useful information not readily attainable through survey material. Conclusions reached regarding compatability between needs and holdings, services and buildings, library hours of operation, methods of early detection and anticipation of changing holdings requirements, and the impact of near future programs are presented along with a list of statistics needing collection, organization, and interpretation on a continuing or longitudinal basis
The Layer 0 Inner Silicon Detector of the D0 Experiment
This paper describes the design, fabrication, installation and performance of
the new inner layer called Layer 0 (L0) that was inserted in the existing Run
IIa Silicon Micro-Strip Tracker (SMT) of the D0 experiment at the Fermilab
Tevatron collider. L0 provides tracking information from two layers of sensors,
which are mounted with center lines at a radial distance of 16.1 mm and 17.6 mm
respectively from the beam axis. The sensors and readout electronics are
mounted on a specially designed and fabricated carbon fiber structure that
includes cooling for sensor and readout electronics. The structure has a thin
polyimide circuit bonded to it so that the circuit couples electrically to the
carbon fiber allowing the support structure to be used both for detector
grounding and a low impedance connection between the remotely mounted hybrids
and the sensors.Comment: 28 pages, 9 figure
Expediting DECam multimessenger counterpart searches with convolutional neural networks
Searches for counterparts to multimessenger events with optical imagers use difference imaging to detect new transient sources. However, even with existing artifact-detection algorithms, this process simultaneously returns several classes of false positives: false detections from poor-quality image subtractions, false detections from low signal-to-noise images, and detections of preexisting variable sources. Currently, human visual inspection to remove the false positives is a central part of multimessenger follow-up observations, but when next generation gravitational wave and neutrino detectors come online and increase the rate of multimessenger events, the visual inspection process will be prohibitively expensive. We approach this problem with two convolutional neural networks operating on the difference imaging outputs. The first network focuses on removing false detections and demonstrates an accuracy of 92% on our data set. The second network focuses on sorting all real detections by the probability of being a transient source within a host galaxy and distinguishes between various classes of images that previously required additional human inspection. We find the number of images requiring human inspection will decrease by a factor of 1.5 using our approach alone and a factor of 3.6 using our approach in combination with existing algorithms, facilitating rapid multimessenger counterpart identification by the astronomical communit
Results from the first use of low radioactivity argon in a dark matter search
Liquid argon is a bright scintillator with potent particle identification
properties, making it an attractive target for direct-detection dark matter
searches. The DarkSide-50 dark matter search here reports the first WIMP search
results obtained using a target of low-radioactivity argon. DarkSide-50 is a
dark matter detector, using two-phase liquid argon time projection chamber,
located at the Laboratori Nazionali del Gran Sasso. The underground argon is
shown to contain Ar-39 at a level reduced by a factor (1.4 +- 0.2) x 10^3
relative to atmospheric argon. We report a background-free null result from
(2616 +- 43) kg d of data, accumulated over 70.9 live-days. When combined with
our previous search using an atmospheric argon, the 90 % C.L. upper limit on
the WIMP-nucleon spin-independent cross section based on zero events found in
the WIMP search regions, is 2.0 x 10^-44 cm^2 (8.6 x 10^-44 cm^2, 8.0 x 10^-43
cm^2) for a WIMP mass of 100 GeV/c^2 (1 TeV/c^2 , 10 TeV/c^2).Comment: Accepted by Phys. Rev.
Optical follow-up of gravitational wave triggers with DECam
Gravitational wave (GW) events have several possible progenitors, including black hole mergers, cosmic string cusps, supernovae, neutron star mergers, and black hole–neutron star mergers. A subset of GW events are expected to produce electromagnetic (EM) emission that, once detected, will provide complementary information about their astrophysical context. To that end, the LIGO-Virgo Collaboration has partnered with other teams to send GW candidate alerts so that searches for their EM counterparts can be pursued. One such partner is the Dark Energy Survey (DES) and Dark Energy Camera (DECam) Gravitational Waves Program (DES-GW). Situated on the 4m Blanco Telescope at the Cerro Tololo Inter-American Observatory in Chile, DECam is an ideal instrument for optical followup observations of GW triggers in the southern sky. The DES-GW program performs subtraction of new search images with respect to preexisting overlapping images to select candidate sources. Due to the short decay timescale of the expected EM counterparts and the need to quickly eliminate survey areas with no counterpart candidates, it is critical to complete the initial analysis of each night's images within 24 hours. The computational challenges in achieving this goal include maintaining robust I/O pipelines during the processing, being able to quickly acquire template images of new sky regions outside of the typical DES observing regions, and being able to rapidly provision additional batch computing resources with little advance notice. We will discuss the search area determination, imaging pipeline, general data transfer strategy, and methods to quickly increase the available amount of batch computing. We will present results from the first season of observations from September 2015 to January 2016 and conclude by presenting improvements planned for the second observing season
Measurement of the t-channel single top quark production cross section
The D0 collaboration reports direct evidence for electroweak production of
single top quarks through the t-channel exchange of a virtual W boson. This is
the first analysis to isolate an individual single top quark production
channel. We select events containing an isolated electron or muon, missing
transverse energy, and two, three or four jets from 2.3 fb^-1 of ppbar
collisions at the Fermilab Tevatron Collider. One or two of the jets are
identified as containing a b hadron. We combine three multivariate techniques
optimized for the t-channel process to measure the t- and s-channel cross
sections simultaneously. We measure cross sections of 3.14 +0.94 -0.80 pb for
the t-channel and 1.05 +-0.81 pb for the s-channel. The measured t-channel
result is found to have a significance of 4.8 standard deviations and is
consistent with the standard model prediction.Comment: 7 pages, 6 figure
Search for new fermions ("quirks") at the Fermilab Tevatron Collider
We report results of a search for particles with anomalously high ionization
in events with a high transverse energy jet and large missing transverse energy
in fb of integrated luminosity collected by the D0 experiment at
the Fermilab Tevatron collider. Production of such particles
(quirks) is expected in scenarios with extra QCD-like {\it SU(N)} sectors, and
this study is the first dedicated search for such signatures. We find no
evidence of a signal and set a lower mass limit of 107 ~GeV for the mass of a
charged quirk with strong dynamics scale in the range from 10 keV to
1 MeV.Comment: submitted to Phys. Rev. Letter
Simultaneous measurement of the ratio B(t->Wb)/B(t->Wq) and the top quark pair production cross section with the D0 detector at sqrt(s)=1.96 TeV
We present the first simultaneous measurement of the ratio of branching
fractions, R=B(t->Wb)/B(t->Wq), with q being a d, s, or b quark, and the top
quark pair production cross section sigma_ttbar in the lepton plus jets channel
using 0.9 fb-1 of ppbar collision data at sqrt(s)=1.96 TeV collected with the
D0 detector. We extract R and sigma_ttbar by analyzing samples of events with
0, 1 and >= 2 identified b jets. We measure R = 0.97 +0.09-0.08 (stat+syst) and
sigma_ttbar = 8.18 +0.90-0.84 (stat+syst)} +/-0.50 (lumi) pb, in agreement with
the standard model prediction.Comment: submitted to Phys.Rev.Letter
- …