156 research outputs found

    Renewable polymers for adhesives from levulinic acid and polyester upcycling

    Get PDF
    Diese Dissertation beschreibt die Entwicklung neuartiger Polymere und Oligomere ausgehend von Derivaten (1,4-pentandiol, 2-Methyltetrahydrofuran, α-Angelicalacton) der bio-basierten Plattformchemikalie Lävulinsäure. Polyurethane basierend auf 1,4-PDO-Polyesterpolyolen zeigten Formgedächtnis-Eigenschaften. Ebenso wurde ein Verfahren für die Copolymerisation von 2-MeTHF und Propylenoxid entwickelt und der Polymerisationsmechanismus untersucht. Im zweiten Teil der Arbeit wurde ein Protokoll für das Upcycling von Polyestern mittels Hydrogenierung zu Polyetherpolyolen entwickelt.This dissertation describes the development of novel polymers and oligomers based on derivatives (1,4-pentanediol, 2-methyltetrahydrofuran, α-angelicalactone) of the bio-based platform chemical levulinic acid. Polyurethanes based on 1,4-PDO polyester polyols showed shape memory properties. A process for the copolymerization of 2-MeTHF and propylene oxide was developed and the polymerization mechanism investigated. In the second part of the thesis a protocol for the upcycling of polyesters by hydrogenation to polyether polyols was developed

    The Predictability of Phytophagous Insect Communities: Host Specialists as Habitat Specialists

    Get PDF
    The difficulties specialized phytophagous insects face in finding habitats with an appropriate host should constrain their dispersal. Within the concept of metacommunities, this leads to the prediction that host-plant specialists should sort into local assemblages according to the local environmental conditions, i.e. habitat conditions, whereas assemblages of host-plant generalists should depend also on regional processes. Our study aimed at ranking the importance of local environmental factors and species composition of the vegetation for predicting the species composition of phytophagous moth assemblages with either a narrow or a broad host range. Our database consists of 351,506 specimens representing 820 species of nocturnal Macrolepidoptera sampled between 1980 and 2006 using light traps in 96 strict forest reserves in southern Germany. Species were grouped as specialists or generalists according to the food plants of the larvae; specialists use host plants belonging to one genus. We used predictive canonical correspondence and co-correspondence analyses to rank the importance of local environmental factors, the species composition of the vegetation and the role of host plants for predicting the species composition of host-plant specialists and generalists. The cross-validatory fit for predicting the species composition of phytophagous moths was higher for host-plant specialists than for host-plant generalists using environmental factors as well as the composition of the vegetation. As expected for host-plant specialists, the species composition of the vegetation was a better predictor of the composition of these assemblages than the environmental variables. But surprisingly, this difference for specialized insects was not due to the occurrence of their host plants. Overall, our study supports the idea that owing to evolutionary constraints in finding a host, host-plant specialists and host-plant generalists follow two different models of metacommunities: the species-sorting and the mass-effect model

    IL-1β reciprocally regulates chemokine and insulin secretion in pancreatic β-cells via NF-κB

    Get PDF
    © 2015 the American Physiological Society. Proinflammatory cytokines impact islet β-cell mass and function by altering the transcriptional activity within pancreatic β-cells, producing increases in intracellular nitric oxide abundance and the synthesis and secretion of immunomodulatory proteins such as chemokines. Herein, we report that IL-1β, a major mediator of inflammatory responses associated with diabetes development, coordinately and reciprocally regulates chemokine and insulin secretion. We discovered that NF-κB controls the increase in chemokine transcription and secretion as well as the decrease in both insulin secretion and proliferation in response to IL-1β. Nitric oxide production, which is markedly elevated in pancreatic β-cells exposed to IL-1β, is a negative regulator of both glucose-stimulated insulin secretion and glucose-induced increases in intracellular calcium levels. By contrast, the IL-1β-mediated production of the chemokines CCL2 and CCL20 was not influenced by either nitric oxide levels or glucose concentration. Instead, the synthesis and secretion of CCL2 and CCL20 in response to IL-1β were dependent on NF-κB transcriptional activity. We conclude that IL-1β-induced transcriptional reprogramming via NF-κB reciprocally regulates chemokine and insulin secretion while also negatively regulating β-cell proliferation. These findings are consistent with NF-κB as a major regulatory node controlling inflammation- associated alterations in islet β-cell function and mass

    SNEV is an evolutionarily conserved splicing factor whose oligomerization is necessary for spliceosome assembly

    Get PDF
    We have isolated the human protein SNEV as downregulated in replicatively senescent cells. Sequence homology to the yeast splicing factor Prp19 suggested that SNEV might be the orthologue of Prp19 and therefore might also be involved in pre-mRNA splicing. We have used various approaches including gene complementation studies in yeast using a temperature sensitive mutant with a pleiotropic phenotype and SNEV immunodepletion from human HeLa nuclear extracts to determine its function. A human–yeast chimera was indeed capable of restoring the wild-type phenotype of the yeast mutant strain. In addition, immunodepletion of SNEV from human nuclear extracts resulted in a decrease of in vitro pre-mRNA splicing efficiency. Furthermore, as part of our analysis of protein–protein interactions within the CDC5L complex, we found that SNEV interacts with itself. The self-interaction domain was mapped to amino acids 56–74 in the protein's sequence and synthetic peptides derived from this region inhibit in vitro splicing by surprisingly interfering with spliceosome formation and stability. These results indicate that SNEV is the human orthologue of yeast PRP19, functions in splicing and that homo-oligomerization of SNEV in HeLa nuclear extract is essential for spliceosome assembly and that it might also be important for spliceosome stability

    Spring Water of an Alpine Karst Aquifer Is Dominated by a Taxonomically Stable but Discharge-Responsive Bacterial Community

    No full text
    Alpine karst aquifers are important groundwater resources for the provision of drinking water all around the world. Yet, due to difficult accessibility and long-standing methodological limitations, the microbiology of these systems has long been understudied. The aim of the present study was to investigate the structure and dynamics of bacterial communities in spring water of an alpine limestone karst aquifer (LKAS2) under different hydrological conditions (base vs. event flow). The study was based on high-throughput 16S rRNA gene amplicon sequencing, study design and sample selection were guided by hydrology and pollution microbiology data. Spanning more than 27 months, our analyses revealed a taxonomically highly stable bacterial community, comprising high proportions of yet uncultivated bacteria in the suspended bacterial community fraction. Only the three candidate phyla Parcubacteria (OD1), Gracilibacteria (GN02), Doudnabacteria (SM2F11) together with Proteobacteria and Bacteroidetes contributed between 70.0 and 88.4% of total reads throughout the investigation period. A core-community of 300 OTUs consistently contributed between 37.6 and 56.3% of total reads, further supporting the hypothesis of a high temporal stability in the bacterial community in the spring water. Nonetheless, a detectable response in the bacterial community structure of the spring water was discernible during a high-discharge event. Sequence reads affiliated to the class Flavobacteriia clearly increased from a mean proportion of 2.3% during baseflow to a maximum of 12.7% during the early phase of the studied high-discharge event, suggesting direct impacts from changing hydrological conditions on the bacterial community structure in the spring water. This was further supported by an increase in species richness (Chao1) at higher discharge. The combination of these observations allowed the identification and characterization of three different discharge classes (Q1–Q3). In conclusion, we found a taxonomically stable bacterial community prevailing in spring waters from an alpine karst aquifer over the entire study period of more than 2 years. Clear response to changing discharge conditions could be detected for particular bacterial groups, whereas the most responsive group – bacteria affiliated to the class of Flavobacteriia – might harbor potential as a valuable natural indicator of “system disturbances” in karst aquifers

    Tip-enhanced near-field optical microscopy

    Get PDF
    Tip-enhanced near-field optical microscopy (TENOM) is a scanning probe technique capable of providing a broad range of spectroscopic information on single objects and structured surfaces at nanometer spatial resolution and with highest detection sensitivity. In this review, we first illustrate the physical principle of TENOM that utilizes the antenna function of a sharp probe to efficiently couple light to excitations on nanometer length scales. We then discuss the antenna-induced enhancement of different optical sample responses including Raman scattering, fluorescence, generation of photocurrent and electroluminescence. Different experimental realizations are presented and several recent examples that demonstrate the capabilities of the technique are reviewed

    Genomic and transcriptomic changes complement each other in the pathogenesis of sporadic Burkitt lymphoma

    Get PDF
    Burkitt lymphoma (BL) is the most common B-cell lymphoma in children. Within the International Cancer Genome Consortium (ICGC), we performed whole genome and transcriptome sequencing of 39 sporadic BL. Here, we unravel interaction of structural, mutational, and transcriptional changes, which contribute to MYC oncogene dysregulation together with the pathognomonic IG-MYC translocation. Moreover, by mapping IGH translocation breakpoints, we provide evidence that the precursor of at least a subset of BL is a B-cell poised to express IGHA. We describe the landscape of mutations, structural variants, and mutational processes, and identified a series of driver genes in the pathogenesis of BL, which can be targeted by various mechanisms, including IG-non MYC translocations, germline and somatic mutations, fusion transcripts, and alternative splicing

    Human TRIM Gene Expression in Response to Interferons

    Get PDF
    Tripartite motif (TRIM) proteins constitute a family of proteins that share a conserved tripartite architecture. The recent discovery of the anti-HIV activity of TRIM5α in primate cells has stimulated much interest in the potential role of TRIM proteins in antiviral activities and innate immunity.To test if TRIM genes are up-regulated during antiviral immune responses, we performed a systematic analysis of TRIM gene expression in human primary lymphocytes and monocyte-derived macrophages in response to interferons (IFNs, type I and II) or following FcγR-mediated activation of macrophages. We found that 27 of the 72 human TRIM genes are sensitive to IFN. Our analysis identifies 9 additional TRIM genes that are up-regulated by IFNs, among which only 3 have previously been found to display an antiviral activity. Also, we found 2 TRIM proteins, TRIM9 and 54, to be specifically up-regulated in FcγR-activated macrophages.Our results present the first comprehensive TRIM gene expression analysis in primary human immune cells, and suggest the involvement of additional TRIM proteins in regulating host antiviral activities

    The genomic and transcriptional landscape of primary central nervous system lymphoma

    Get PDF
    Primary lymphomas of the central nervous system (PCNSL) are mainly diffuse large B-cell lymphomas (DLBCLs) confined to the central nervous system (CNS). Molecular drivers of PCNSL have not been fully elucidated. Here, we profile and compare the whole-genome and transcriptome landscape of 51 CNS lymphomas (CNSL) to 39 follicular lymphoma and 36 DLBCL cases outside the CNS. We find recurrent mutations in JAK-STAT, NFkB, and B-cell receptor signaling pathways, including hallmark mutations in MYD88 L265P (67%) and CD79B (63%), and CDKN2A deletions (83%). PCNSLs exhibit significantly more focal deletions of HLA-D (6p21) locus as a potential mechanism of immune evasion. Mutational signatures correlating with DNA replication and mitosis are significantly enriched in PCNSL. TERT gene expression is significantly higher in PCNSL compared to activated B-cell (ABC)-DLBCL. Transcriptome analysis clearly distinguishes PCNSL and systemic DLBCL into distinct molecular subtypes. Epstein-Barr virus (EBV)+ CNSL cases lack recurrent mutational hotspots apart from IG and HLA-DRB loci. We show that PCNSL can be clearly distinguished from DLBCL, having distinct expression profiles, IG expression and translocation patterns, as well as specific combinations of genetic alterations

    The Influence of Hydroxylation on Maintaining CpG Methylation Patterns: A Hidden Markov Model Approach

    Get PDF
    German Research Council (DFG) as part of the Collaborative Research Center "Physical modeling of non-equilibrium processes in biological systems" (SFB 1027) and the Cluster of Excellence on Multimodal Computing and Interaction at Saarland Universit
    corecore