1,080 research outputs found

    The Periodic Spectroscopic Variability of FU Orionis

    Full text link
    FU Orionis systems are young stars undergoing outbursts of disc accretion and where the optical spectrum contains lines associated with both the disc photosphere and a wind component. Previous observations of the prototype FU Orionis have suggested that the wind lines and the photospheric lines are modulated with periods of 14.54 and 3.54 days respectively (Herbig et al. 2003). We have re-observed the system at higher spectral resolution, by monitoring variations of optical line profiles over 21 nights in 2007 and have found periods of 13.48 and 3.6 days in the wind and disc components consistent with the above: this implies variability mechanisms that are stable over at least a decade. In addition we have found: i) that the variations in the photospheric absorption lines are confined to the blue wing of the line (around -9km/s): we tentatively ascribe this to an orbiting hotspot in the disc which is obscured by a disc warp during its receding phase. ii) The wind period is manifested not only in blue-shifted Halpha absorption, but also in red-shifted emission of Halpha and Hbeta, as well as in blue-shifted absorption of Na I D, Li I and Fe II. iii) We find that the periodic modulation of blue-shifted Halpha absorption at around -100km/s, is phase lagged with respect to variations in the other lines by ~1.8days. This is consistent with a picture in which variations at the wind base first affect chromospheric emission and then low velocity blue-shifted absorption, followed - after a lag equal to the propagation time of disturbances across the wind's acceleration region - by a response in high velocity blue-shifted absorption. Such arguments constrain the size of the acceleration region to ~10^12cm. We discuss possible mechanisms for periodic variations within the innermost 0.1AU of the disc, including the possibility that these variations indicate the presence of an embedded hot Jupiter.Comment: 20 pages, 23 figures. Accepted for publication in MNRAS. See http://www.ast.cam.ac.uk/~slp65/FUOripaperHRes.pdf for a pdf version of the paper with high-resolution images; footnote added to the titl

    High-resolution spectroscopy of QY Sge -- An obscured RV Tauri variable?

    Get PDF
    The first high-resolution optical spectra of QY Sge are presented and discussed. Menzies & Whitelock (1988) on the basis of photometry and low-resolution spectra suggested that this G0I supergiant was obscured by dust and seen only by scattered light from a circumstellar reflection nebula. The new spectra confirm and extend this picture. Photospheric lines are unusually broad indicating scattering of photons from dust in the stellar wind. Presence of very broad Na D emission lines is confirmed. Sharp emission lines from low levels of abundant neutral metal atoms are reported for the first time. An abundance analysis of photospheric lines shows that the stellar atmosphere is of approximately solar composition but with highly condensible (e.g., Sc and Ti) elements depleted by factors of 5 to 10.Comment: 8 pages, 9 figures, accepted for publication in MNRA

    X-ray Emission from the FU Orionis Star V1735 Cygni

    Full text link
    The variable star V1735 Cyg (= Elias 1-12) lies in the IC 5146 dark cloud and is a member of the class of FU Orionis objects whose dramatic optical brightenings are thought to be linked to episodic accretion. We report the first X-ray detections of V1735 Cyg and a deeply-embedded class I protostar lying 24 arcsecs to its northeast. X-ray spectra obtained with EPIC on XMM-Newton reveal very high-temperature plasma (kT > 5 keV) in both objects, but no large flares. Such hard X-ray emission is not anticipated from accretion shocks and is a signature of magnetic processes. We place these new results into the context of what is presently known about the X-ray properties of FU Orionis stars and other accreting young stellar objects.Comment: 25 pages, 6 figure

    Fundamental Vibrational Transition of CO During the Outburst of EX Lupi in 2008

    Get PDF
    We report monitoring observations of the T Tauri star EX Lupi during its outburst in 2008 in the CO fundamental band at 4.6–5.0 μm. The observations were carried out at the Very Large Telescope and the Subaru Telescope at six epochs from 2008 April to August, covering the plateau of the outburst and the fading phase to a quiescent state. The line flux of CO emission declines with the visual brightness of the star and the continuum flux at 5 μm, but composed of two subcomponents that decay with different rates. The narrow-line emission (50 kms^(−1) in FWHM) is near the systemic velocity of EX Lupi. These emission lines appear exclusively in v =1–0. The line widths translate to a characteristic orbiting radius of 0.4 AU. The broad-line component (FWZI ~ 150 km s^(−1)) is highly excited up to v ≤ 6. The line flux of the component decreases faster than the narrow-line emission. Simple modeling of the line profiles implies that the broad-line emitting gas is orbiting around the star at 0.04–0.4 AU. The excitation state, the decay speed of the line flux, and the line profile indicate that the broad-line emission component is physically distinct from the narrow-line emission component, and more tightly related to the outburst event

    Trajectories of Experience Through the Pandemic: A Qualitative Longitudinal Dataset

    Get PDF
    Here, we present a dataset collected within a longitudinal interview study that has been conducted as part of a larger project (i.e., Viral Communication), exploring (changing) public attitudes and behaviours through the course of the pandemic in Germany. From a nationally representative survey, forty participants were purposively sampled on the basis of gender, age and socioeconomic status for the interviews. Each participant was interviewed three times within a 10 month time frame (between December 2020 and September 2021), with the exception of two dropouts from the study. The semi-structured interviews were developed to further elaborate on some of the responses in the survey instrument and to provide additional insights into topics and controversies surrounding the Covid-19 pandemic in Germany, such as information/misinformation, trust/distrust, compliance, vaccination, and conspiracy beliefs

    Mapping the CMB I: the first flight of the QMAP experiment

    Full text link
    We report on the first flight of the balloon-borne QMAP experiment. The experiment is designed to make a map of the cosmic microwave background anisotropy on angular scales from 0.7 to several degrees. Using the map we determine the angular power spectrum of the anisotropy in multipole bands from l~40 to l~140. The results are consistent with the Saskatoon (SK) measurements. The frequency spectral index (measured at low l) is consistent with that of CMB and inconsistent with either Galactic synchrotron or free-free emission. The instrument, measurement, analysis of the angular power spectrum, and possible systematic errors are discussed.Comment: 4 pages, with 5 figures included. Submitted to ApJL. Window functions and color figures are available at http://pupgg.princeton.edu/~cmb/welcome.htm

    Gauge symmetry of linearised Nordström gravity and the dual spin two field theory

    Get PDF
    The field equations are proposed for the third rank tensor field with the hook Young diagram. The equations describe the irreducible spin two massless representation in any d ≥ 3. The starting point of the construction is the linearised system of Einstein equations which includes the Nordström equation. This equation, being considered irrespectively to the rest of the Einstein system, corresponds to the topological field theory. The general solution is a pure gauge, modulo topological modes which we neglect in this article. We find the sequence of the reducible gauge transformations for the linearised Nordström equation, with the hook tensor being the initial gauge symmetry parameter. By substituting the general solution of the Nordström equation into the rest of the Einstein’s system, we arrive at the field equations for the hook tensor. The degree of freedom number count confirms, it is the spin two theory
    corecore