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Abstract The field equations are proposed for the third
rank tensor field with the hook Young diagram. The equa-
tions describe the irreducible spin two massless representa-
tion in any d ≥ 3. The starting point of the construction is the
linearised system of Einstein equations which includes the
Nordström equation. This equation, being considered irre-
spectively to the rest of the Einstein system, corresponds to
the topological field theory. The general solution is a pure
gauge, modulo topological modes which we neglect in this
article. We find the sequence of the reducible gauge trans-
formations for the linearised Nordström equation, with the
hook tensor being the initial gauge symmetry parameter. By
substituting the general solution of the Nordström equation
into the rest of the Einstein’s system, we arrive at the field
equations for the hook tensor. The degree of freedom number
count confirms, it is the spin two theory.

1 Introduction

The spin two massless irreducible representation admits,
besides the linearised Einstein equations, alternative field-
theoretical descriptions by the third rank tensor with hook
Young diagram [1–3]. These alternative descriptions are
connected with the symmetric tensor representation by the
Hodge dualisations in d ≥ 5, and they do not apply to d ≤ 4.
Being consistent at free level, these formulations are known
to obstruct inclusion of interactions [4]. For various higher
spin dualisations of this type, and review of recent devel-
opments, we refer to [5,6]. We can also mention the recent
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work [7] on the chiral formulation for higher spin fields. This
formulation admits different higher spin interaction vertices
comparing to the counterparts based on symmetric tensors.

One more dual description of gravity worth to mention is
the Lanczos potential [8,9], being also the third rank tensor
with hook symmetry. The Lanczos tensor can be thought of
as a potential for the Weyl tensor [10], by analogy with a
vector potential for the electromagnetic strength tensor. This
analogy arises from the fact that the Bianchi identities, being
imposed on the Weyl tensor C , imply that C is a combi-
nation of the first derivatives of the third rank tensor with
the hook symmetry. For discussion of physical interpreta-
tions of Lanzcos tensor and recent developments, we refer
to [11,12]. The Lanczos tensor is essentially d = 4 structure
[13] though the analogues with different Young diagrams
exist in higher dimensions [14]. One more somewhat simi-
lar dualisation scenario is proposed in reference [15] for the
massive spin 2 field in d = 3. In this work, the transversal-
ity equation for traceless second rank tensor field is solved
by introducing the potential, which is also symmetric second
rank tensor. In higher dimensions, the antisymmetric tensor
potential is introduced for massive spin 1 in article [16] also
by solving the transversality condition for the vector field.

In this article, we propose another alternative represen-
tation for the spin two by the third rank tensor with the
hook Young diagram. The key idea of this dualisation of
the spin two field appeals to the same analogy with the equa-
tion dF = 0 for the spin one field strength, which motivates
the introduction of the Lanczos potential for the Weyl ten-
sor. We proceed from a different interpretation of the analogy,
which leads to a different result. The equation dF = 0, being
considered as such, irrespectively to the rest of Maxwell sys-
tem, describes a topological field theory, in the sense that
it has no degrees of freedom modulo De Rham cohomol-
ogy. The gauge symmetry transformation for this equation is
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δF = d A, where A is a gauge parameter, being an arbitrary
one-form. The general solution is a pure gauge, F = d A.
Substituting this solution into remaining Maxwell equations
d ∗ F = 0, one arrives at the equations for the potential
A. Einstein’s system without matter includes the Nordström
equation

R = − 2d

d − 2
�, (1)

where R is a scalar curvature, d is a dimension of the space-
time, and � is the cosmological constant. This equation, if
considered by itself, independently of the entire Einstein sys-
tem, appears to be a topological field theory, in the sense it
does not have local degrees of freedom. For the full non-linear
theory (1), the complete set of infinitesimal gauge transfor-
mations is unknown in the explicit form, to the best of our
knowledge. Diffeomorphism is an obvious gauge symme-
try for the Nordström equation, though it is insufficient to
gauge out all the local degrees of freedom of equation (1).
Furthermore, the general solution for (1) cannot reduce to
diffeomorphism, because this would mean Einstein’s equa-
tions, having (1) among them, admit only trivial solutions.
Implicitly, the existence of extra gauge symmetry for Eq. (1)
is confirmed by the theorem due to Koiso [17], see also [18],
which states that constant curvature metrics admit infinitesi-
mal deformations. The existence theorem by Koiso does not
provide the explicit form of the gauge symmetry transfor-
mation, however. For the linearised equation (1), we find the
gauge symmetry in the explicit form in the next section. The
gauge transformation δh = ∂ · H is parameterised by the
third rank tensor H with the hook symmetry. This symmetry
is reducible, and we find the complete sequence of the sym-
metry for symmetry gauge transformations. The local degree
of freedom count (see in the Appendix) confirms that it is a
topological field theory indeed. Hence, the general solution
to the linearised equation (1) is the pure gauge h = ∂ · H ,
much like F = d A is a general solution to the topological
system dF = 0 for the case of spin one. In this sense, the
hook tensor serves as the potential for the metric. Substitut-
ing h = ∂ ·H into the linearised Einstein equations, we arrive
at the equations for the hook H . Once the general solution of
(1), being a subsystem of Einstein’s equations, is substituted
into the rest of the Einstein system, it should be an equivalent
field theory. The degree of freedom count for the equations
for the hook tensor confirms that we get the spin two the-
ory. These equations for the hook tensor of spin two differ
from the earlier known equations for dualisations of the met-
ric, and also from the linearised equations for the Lanczos
tensor. These equations are consistent in all d ≥ 3, while
the sequence of reducible gauge symmetry transformations
depends on the dimension.

The article is organised as follows. In the next section, we
find the reducible gauge symmetry of the linearised Nord-
ström equation. In Sect. 3, we discuss the linearised Einstein
equations reformulated in terms of the hook tensor. In Sect. 4,
we discuss the results and further perspectives. The Appendix
details the degree of freedom counting.

2 Gauge symmetry of linearised Nordström equation

For any system of Lagrangian equations, the Dirac–Bergmann
algorithm allows one to find the gauge symmetry, in prin-
ciple. For not necessarily Lagrangian equations, like (1),
the extension of the Dirac–Bergmann algorithm is known
[19]. There are two potential difficulties with the extended
Dirac–Bergmann procedure of finding the gauge symmetry,
given the non-Lagrangian field equation. First, the proce-
dure implies to treat the equation as the evolutionary one.
This assumes to split the space-time into the space and time,
that breaks explicit general covariance, much like the Dirac–
Bergmann method for variational equations. Second, the
algorithm implies to invert the non-degenerate linear oper-
ators. In the context of field theory, these operators can be
differential with respect to the space coordinates. Inversion
of these operators could result in the spacial non-locality of
the infinitesimal gauge transformations though they would
be local in time. For the d = 2 field theories, the procedure
of finding all the infinitesimal gauge symmetries in the local
form is proposed in the article [20]. For d > 2, no system-
atic method is known to find the complete set of generators of
local gauge symmetry, given a system of field equations. This
explains why the complete gauge symmetry of the Nordström
equation is still unknown.

For linear field equations, the problem of finding the gauge
symmetry is much simpler than for non-linear systems. For
a systematic exposition of the covariant procedure of find-
ing the gauge symmetry of not necessarily Lagrangian linear
systems, see Section 4 in the article [21]. Here, we apply
this procedure to linearisation of equation (1). Substituting
into (1) decomposition of the metric gμν = ημν + hμν to
the Minkowski background η and the small deviation h, and
taking the first order approximation in h, we arrive at the
linearised Nordström equation

N̂μν(∂)hμν(x) = − 2d

d − 2
�,

N̂μν(∂) = ∂μ∂ν − ημν� , (2)

where � = ημν∂μ∂ν . The most general infinitesimal gauge
transformation of hμν reads

δEhμν = R̂μν
A(∂)E A , A = 1, . . . , N , (3)
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where the gauge generators R̂μν
A(∂) are supposed to be lin-

ear differential operators, while the gauge parameters E A are
assumed to be arbitrary real smooth functions of Minkowski
space. The fact that R̂ is the operator means that it is a homo-
geneous polynomial in ∂λ with constant real coefficients:

R̂μν
A(∂) = Rμν|λ1...λk

A∂λ1 . . . ∂λk , (4)

where k = 1, . . . , n. The order n of the differential operators
R̂, and their total number N is unknown from an outset.
Once transformation (3) is supposed to be a symmetry of
linearised Nordström theory, it has to leave the l.h.s. of Eq. (2)
unchanged

N̂μν(∂)δEhμν = 0 , ∀ E . (5)

As the gauge parameters E are arbitrary smooth functions,
the above relation is equivalent to the relation for the gauge
generators

N̂μν(∂)R̂μν
A(∂) = 0 . (6)

Given N̂μν(∂) (2), this relation can be viewed as the equa-
tions defining the gauge symmetry generators R̂μν

A(∂). The
operators R̂A are assumed to constitute the generating set
for the solutions to the equations (6) in the sense that any
solution is spanned by these generators

N̂μν(∂)K̂μν(∂) = 0 ⇔ ∃ K̂ A(∂) :
K̂μν(∂) = K̂ A(∂)R̂μν

A(∂) , (7)

where the expansion coefficients K̂ A(∂) are polynomials in
∂λ.

Let us discuss the structure of Eq. (6). The operator
N̂μν (2) is an element of the d(d + 1)/2-dimensional linear
space of covariant symmetric tensors. The gauge generators
are elements of the dual space of contravariant symmetric
tensors orthogonal to N̂μν . If the components of the ten-
sor N̂μν were the numbers, the orthogonal space would be
(d(d + 1)/2 − 1)-dimensional, and one could easily find the
basis of d(d+1)/2−1 independent vectors in this space. The
subtlety is that the elements of N̂μν are polynomials in ∂λ, not
numbers. So, to find the gauge symmetry of the equation (2),
one has to solve the Eqs. (6) with respect to R̂ being the ele-
ments of the ring of polynomials R[∂0, . . . , ∂d−1], where ∂λ

are considered as commuting formal variables. The problem
of this type is known in commutative algebra as the issue
of the first syzygy module [22]. The generating set of the
solutions to (6) can be overcomplete, in the sense that the
elements of any generating set R̂A are linearly dependent
with polynomial coefficients

R̂μν
A(∂)R̂(1)A

A1(∂) = 0 . (8)

From the algebraic perspective, this redundancy of the gener-
ating set of the first syzygy module corresponds to the second
syzygy module [22]. For the original gauge symmetry (3), the
second syzygy means reducibility, i.e. the gauge parameters
E A admit the gauge transformations of their own such that
do not affect the transformations of original fields hμν :

δE1E A = R̂(1)A
A1E A1 ,

δE1

(
δEhμν

) = R̂μν
A R̂

(1)A
A1E A1 = 0 , ∀ E A1 . (9)

The second level gauge symmetry can be reducible again,
that corresponds to the third syzygy module, etc. In this way
we arrive at the chain of syzygies

R̂(k−1)Ak−1
Ak (∂) R̂(k)Ak

Ak+1(∂) = 0 , (10)

where k = 1 , . . ., A0 ≡ A. Once the chain of syzygies
above is known, it defines the sequence of gauge-for-gauge
symmetries such that the transformations of parameters of
certain level do not contribute to the gauge transformation of
previous level,

δEk+1E Ak = R̂(k+1)Ak
Ak+1 E Ak+1 , δEk+1

(
δEkE Ak−1

)

= R̂(k)Ak−1
Ak R̂

(k+1)Ak
Ak+1E Ak+1 = 0 ,

∀ E Ak+1 , k = 1, . . . , A0 ≡ A . (11)

The choice of the generating set R̂ is not unique for every
syzygy module, and the length of the chain of syzygies can
depend on the choice. The choice with the minimal length L
of the sequence of syzygies exists such that L ≤ d, accord-
ing to Hilbert Syzygy Theorem [22]. Even though operator
N̂μν of linearised Nordström equation (2) is quadratic in ∂λ,
the generators of gauge symmetries could be of any order.
The examples of the higher order gauge symmetries in the
field theory with the second order equations of motion can
be found in [21]. The complete sequence of the syzygies
forms the resolution for the module. The minimal resolu-
tion (i.e. such that has the minimal length of the sequence
of syzygies) is unique up to isomorphism. As we see, the
problem establishing the gauge symmetry for the linearised
Nordström equation and the sequence of gauge-for-gauge
symmetries, reduces to explicitly finding the minimal reso-
lution for equations (6). Technically this means, we have to
find all the generators R̂ by solving the sequence of Eqs. (6),
(8), (10), given the operator N̂ (2) involved in the first rela-
tion of the sequence. The solution is expected to be explicitly
covariant, once the equation enjoys Poincaré symmetry.

Computer packages are known for finding the minimal
resolutions. To probe the possible structure of the resolution
for Eq. (6), we have applied the Macaulay2 package [23],
which tells us that resolution is generated by the elements of
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the first order in ∂μ in the dimensions 3, 4, 5. The length of
the resolution is d−1 in these cases. The computer output for
the gauge generators is not explicitly covariant, so it cannot
be immediately applied even in the lower dimensions, though
it is helpful for restricting the covariant ansatz to solve the
sequence of the Eqs. (6), (8), (10).

Given the hint from computer calculations, we take the
covariant first order ansatz for the gauge generators for the
Eq. (2), and the symmetries of all the higher levels. Once the
symmetry is of the first order, the symmetry of the k-th level
is parameterised by the tensor of rank k + 2 as the original
field is the second rank tensor.

Substituting the first order ansatz δhμν = ∂λRμνλ, where
R is an arbitrary tensor with symmetry1 in the first two labels,
R(μν)λ = Rμνλ, into relations (5), we get the specific form of
the Eq. (6) that defines the gauge transformations (3). Solving
equation

(∂μ∂ν − ημν�)∂λR
μνλ = 0 , (12)

we arrive at the gauge transformation for the fields

δHh
μν = ∂λH

μνλ − 1

d − 1
ηαβ

(
ημν∂λH

αβλ

+ ∂νHαβμ + ∂μHαβν

)
, (13)

with the gauge parameter Hμνλ being arbitrary third rank
tensor with the hook symmetry,2

H (μν)λ = Hμνλ , H (μνλ) = 0 . (14)

This tensor is described by the Young diagram

μ ν

λ
.

Using the first order ansatz δHμνλ = ∂ρRμνλρ for the gauge
symmetry of the gauge parameters with R(μν)λρ = Rμνλρ ,
R(μνλ)ρ = 0, we arrive at the equation

∂ρ∂λ

[
Rμνλρ − 1

d − 1
ηαβ

(
ημνRαβλρ

+ ηνλRαβμρ + ηλμRαβνρ

)]
= 0 . (15)

1 Symmetrization over a set of indices is denoted by round brackets, and
anti-symmetrization by square brackets, e.g. T (μν)... = 1/2(Tμν... +
T νμ...), T [μν]... = 1/2(Tμν... − T νμ...).
2 We use the symmetric basis for the hooks.

The solution to this equation defines gauge symmetry trans-
formations (9) for the hook. This transformation reads

δH1 H
μνλ = ∂ρ

(
Hμνλρ − 1

3

1

d − 1
ηαβ

(
2ημνHαβλρ

− ηνλHαβμρ − ηλμHαβνρ

))
, (16)

where Hμνλρ is a tensor with hook symmetry type,

μ ν

λ

ρ

,

i. e. H (μν)λρ = Hμνλρ , H (μνλ)ρ = 0, Hμν(λρ) = 0. Along
the same line, we arrive to the following answer for sequence
of gauge transformations (11):

δHk H
μν|λρ1...ρk−1 = ∂ρk H

μνλρ1...ρk , (17)

where k = 2, . . . , d−2, with the gauge parameters being the
tensors of rank k + 3 at k-th level with the hook symmetry

μ ν

λ

ρ1...

ρk

.

Relations (13), (16)–(17) provide the complete sequence
of the reducible gauge symmetry transformations for the orig-
inal metric obeying the linearised Nordström equation, and
for the gauge parameters of all the levels.

Once the gauge parameters are the hook-type tensors, the
question can be asked about the linearised diffeomeorphism
transformations, being the obvious gauge symmetry of the
linearised Nordström equation, as these transformations are
parameterised by the vectors, not the hook-type tensors. In
fact, the diffeomorphism is included in the transformation
(13) parameterised by the traceful hook. To see that, let us
decompose the hooks into the trace and traceless part,

Hμνλ1...λs = H̃μνλ1...λs + 1

2

1

d − s

(
2ημνH ′λ1...λs

− s
(
ην[λ1 H ′μ|λ2...λs ] + η[λ1|μH ′ν|λ2...λs ])

)
,

ημν H̃
μνλ1...λs ≡ 0 ,

ημνH
μνλ1...λs ≡ H ′λ1...λs , (18)

where s = 1, . . . , d − 1. Introducing separate notation for
the traces with appropriate normalisation

vλ ≡ −3

2

1

d − 1
H ′λ ,
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vλρ1...ρr ≡ (−1)r+1 1

2

1

d − r − 1
H ′λρ1...ρr , (19)

where r = 1, . . . , d−2, we arrive to the gauge transformation
that explicitly includes diffeomorphism in the familiar form,

δhμν = ∂λ H̃
μνλ + ∂νvμ + ∂μvν . (20)

Decomposing the hook tensors into the trace and traceless
part, we can reorganise the sequence of gauge-for-gauge
transformations in the following way

δ H̃μνλ1...λr = ∂λr+1

(
H̃μνλ1...λr+1

+ (−1)r+1 1

d − r

(
2ημνvλ1...λr+1

− r

(
ην[λ1vμ|λ2...λr ]λr+1

+ η[λ1|μvν|λ2...λr ]λr+1

)))

+ ∂νvμλ1...λr + ∂μvνλ1...λr ; (21)

δvλ1...λr = − d − r − 1

d − r
∂λr+1v

λ1...λr+1 , (22)

where r = 1, . . . , d − 2. It is curious to notice that the
transformations for the hook traces v, being antisymmetric
tensors, decouple from the transformations of the traceless
hook parameters, while the transformations of H̃ involve the
higher order v’s. Let us elaborate on the structure of these
gauge transformations. At the level of original gauge trans-
formation (20) both the traceless hook parameter and the
vector are involved in a homogeneous way, with vμ inducing
the diffeomorphism. This vector gauge parameter enjoys the
gauge symmetry parameterised by bi-vector vμν = − vνμ,

δvμ = −d − 2

d − 1
∂νv

μν . The shift is transverse, ∂μδvμ = 0,

so the volume preserving diffeomorphism may seem gauged
out from the entire deffeomorphism algebra. In fact, the sit-
uation is different: the volume preserving diffeomorphism
subalgebra can be absorbed by the transformations generated
by traceless hook. In particular, taking the traceless hook of
the special form

H̃μνλ = ∂ρ

(
H̃μνλρ + 1

d − 1

(
2ημνvλρ

− ηνλvμρ − ηλνvνρ

))
+ ∂νvμλ + ∂μvνλ , (23)

and substituting that into the gauge transformation (20), we
get the diffeomorphism δhμν ∼ ∂μvν + ∂νvμ induced by
transverse vector vμ ∼ ∂νv

μν . In this sense, the volume

preserving diffeomorphism is included into the gauge trans-
formation (20) twice: for the first time as a part of the usual
diffeomorphism transformation, and for the second time as
the transformation (20) induced by the hook of the special
form (23). These two sources of the volume preserving dif-
feomorphism can compensate each other, so the original field
can remain unchanged under the transformation (20). It is
the source of reducibility of gauge symmetry related to the
volume preserving diffeomorphism. Once the volume pre-
serving diffeomorphisms are the reducible gauge transfor-
mations by themselves, this leads to the full sequence of
gauge-for-gauge transformations (22). From the perspective
of Riemannian geometry, the source of the gauge symmetry
(21) parameterised by the hook tensors is not evident at the
moment.

To finalise this Section, let us mention that one can count
degree of freedom number in explicitly covariant way by the
recipe of the article [24], given the field equations and their
gauge symmetry, including the symmetry for symmetry. For
the linearised Nordström equation this count is detailed in the
Appendix. The result is that the Norsdtröm equation does not
have local degrees of freedom indeed.

3 The field equations for the hook tensor representing
massless spin two

In this section, we use the complete gauge symmetry of the
linearised Nordström equation to construct the dual formu-
lation of the massless spin 2 theory.

We begin with the Lagrangian of linearised Einstein grav-
ity with cosmological constant �,

L = 1

4

(
∂μhνλ∂

μhνλ + 2∂μh∂νhνμ

− 2∂μhνλ∂λhνμ − ∂μh∂μh
) − �h , (24)

where h ≡ ημνhμν . The corresponding Lagrange equations
read

Lμν ≡ 1

2

(
∂μ∂λhνλ + ∂ν∂

λhμλ − �hμν − ∂μ∂νh
)

− 1

2
ημν

(
∂λ∂ρhλρ − �h

) − �ημν = 0 . (25)

The Nordström equation is the trace of the Einstein sys-
tem. If the Nordström equation is considered separately from
the entire Einstein system, it will be the field without local
degrees of freedom. Hence, the general solution to the Nord-
ström equation is a gauge transformation of any particular
solution. Given the gauge symmetry transformations (13),
the general solution reads
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hμν = ∂λH
μνλ − 1

d − 1

(
ημν∂λH

′λ + ∂νH ′μ

+ ∂μH ′ν
)

+ 2�

(d − 2)(d − 1)(2k − 1)

(
xμxν

+ kημνxλx
λ

)
, (26)

where proportional to � term is the particular solution, and
k = const . This particular solution can be viewed as the
small � approximation to the constant curvature space metric
in Lorentzian coordinates. We do not elaborate on this inter-
pretation here, the details can be found in the article [25].
Substituting the metric (26), being the general solution of
linearised Nordström equation into linearised Einstein equa-
tions (25), we arrive at the equations for the hook tensor,

Eμν(H) ≡ 1

2

(
∂μ∂λ∂ρHνλρ + ∂ν∂

λ∂ρHμλρ

− �∂λHμνλ

) − (
∂μ∂ν∂λH

′λ

− ημν�∂λH
′λ) = 0. (27)

Once the general solution of the subsystem is substituted back
in the entire system, this does not change dynamical content
of the theory. Because of this reason, the equations for the
hook (27) have to be equivalent to the original linearised
Einstein equations. The hook can be viewed, in a sense, as a
potential for the metric of constant scalar curvature, as it is
discussed in the Introduction.

Let us now discuss the gauge algebra of the equations
for hook. By construction, Eq. (27) have the same gauge
identities among them as the Einstein system,

∂νEμν(H) ≡ 0 . (28)

The sequence of gauge symmetries for field equations (27)
coincides with (16)–(17), as these transformations do not
affect the metric (26).

The system (27) is obviously non-Lagrangian as the l.h.s.
is the symmetric second rank tensor, while the field is the third
rank tensor with the hook Young diagram. From this perspec-
tive, it seems natural that no pairing is seen between the gauge
symmetries and gauge identities as the second Noether the-
orem does not apply to the non-Lagrangian systems. Be the
system Lagrangian or not, one can count the degree of free-
dom (DoF) number, given the gauge symmetries and gauge
identities of the field equations. This count is detailed in the
Appendix. The DoF number is d2 −3d by phase-space count
that confirms once again that Eq. (27) indeed describe the
massless spin two.

In the end of this section let us mention that Eq. (27) for the
spin two in the hook representation do not explicitly involve
the cosmological constant, while linearised Einstein’s system

(25) includes �-term. This does not indicate inequivalence
because at the linearised level the constant source can be
always excluded by the linear local redefinition of the fields,
even directly in the Lagrangian. To get rid of � in the linear
equations, one just shifts the metric hμν by the particular
solution of the equation with specific constant in the right
hand side. Beyond the linear level, the cosmological constant
has to be accounted for indeed.

4 Concluding remarks

In conclusion, let us discuss the two main results of the article.
The first result is that complete reducible gauge symmetry

of the Nordström equation is found at linearised level. Given
the gauge symmetry, we proof that the theory is topological
in the sense that all the local degrees of freedom are gauged
out. Beyond the linearised level, the complete gauge symme-
try of Nordström equation still remains an open issue. The
non-linear theory is obviously consistent, as the solutions
exist to the field equation. The Nordström equation admits
smooth linearisation, so one can think that the gauge sym-
metry of linear approximation can be consistently deformed
in a perturbative way. One more argument supporting the
existence of gauge symmetry of the non-linear Nordström
equation, besides the diffeomorphism, is the Koiso theorem
[17,18]. The theorem states that constant scalar curvature
spaces admit infinitesimal deformations in the vicinity of
general metric with R = �. It is the existence theorem that
does not provide explicit form for the gauge generators. The
theorem also states that exceptional constant scalar curvature
metrics are possible such that existence of the deformation is
in question. These exceptions occur when � is correlated in
certain way with eigenvalues of Laplacian for the space with
this metric. This can indicate that gauge symmetry of non-
linear Nordström equation admits some stationary points in
the space of metrics. A toy model example for a similar phe-
nomenon can be found in the article [26]. It is the example of
a simple topological field theory where the gauge symmetry
admits stationary points in the space of fields. As one can
learn from this example, the linear limit of the gauge sym-
metry is reducible, and it still has stationary points, while the
linear limit of the field equation (the limit is smooth) admits
irreducible gauge symmetry without stationary points. This
can indicate that problem of finding the gauge symmetry for
Nordström equation beyond the linearised level is not nec-
essarily solvable by deforming the transformations of linear
theory.

The second result of the article is the dual representation
for the massless spin two theory by the third rank tensor with
the hook Young diagram subject to Eq. (27). This result is
deduced from the previous one. Once the linearised Nord-
ström equation is a topological field theory, the general solu-
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tion is a pure gauge. In this sense the hook is a potential
for Nordström metric. Given the metric in terms of the hook
potential, we substitute it into the linearised Einstein sys-
tem arriving at Eq. (27). By construction, these equations are
equivalent to the original equations for the symmetric sec-
ond rank tensor. Equation (27) enjoy reducible gauge sym-
metry which includes the volume preserving diffeomorphism
transformations and some other symmetries whose geometric
interpretation is not evident at the moment. Given the com-
plete gauge symmetry, degree of freedom count confirms, it
is the massless spin two theory.

Equation (27) for spin two are obviously non-Lagrangian.
Making use of the general Stueckelberg scheme of the article
[27], these equations can be cast into Lagrangian setup. The
method of including the Stueckelberg fields of the work [27]
begins with completion of the Lagrangian equations by the
differential consequences. The Stueckelberg field is intro-
duced for every added consequence. The outcome is proven
equivalent to the original theory, and it is Lagrangian. If the
set of added consequences is overcomplete, the Stueckel-
berg symmetry is reducible [16]. For the problem at hands,
Einstein’s system is to be complemented by the third order
consequence with the hook Young diagram. Then the method
of article [16] is applied, and the result will be the equivalent
Lagrangian theory involving simultaneously both metric and
hook tensor. The Stueckelberg gauge symmetry can be fixed
in different ways. One way is to fix the hook that leads to
the original Einstein system. Another gauge condition fixes
the symmetric tensor reducing the system to Eq. (27). To put
it differently, the Lagrangian formulation is possible which
simultaneously involves both metric and its potential, being
the hook tensor. Imposing different gauges one can switch
between these two dual formulations. Construction of this
Lagrangian is work in progress. This construction seems
working in unobstructed way at the non-linear level. The
matter is that the non-linear Einstein’s equations also admit
the differential consequence with the hook Young diagram,
and the Stueckelberg field can be iteratively included pro-
ceeding from this consequence in explicitly covariant way.
If the original system is linearised, the inclusion of Stueck-
elberg fields terminates at squares. In the non-linear case
it continues to the higher orders. It is worth to notice that
the procedure of iterative inclusion of Stueckelberg fields is
unobstructed if the original system is consistent [27]. This can
open the way to construct the dual theory of massless spin
two which admits consistent interactions. Once the metric
is switched off from the Stueckelberg formulation by gauge
fixing (which reduces the metric to the fixed one), the hook
self-interactions will explicitly depend on the background
metric. This dependence does not seem essential at least for
infinitesimal deformations of the background metric, as it is
just another gauge in the Stueckelberg theory.

As the last remark let us mention that the higher derivatives
in the field equations for hooks (27) do not mean instability.
Various higher derivative theories are stable, see e.g. [28–
30], even though the canonical energy is unbounded. This
happens because there can exist the other bounded conserved
quantity which stabilizes the dynamics. For the third order
equations (27), the bounded conserved quantity is obvious:
it is the canonical energy of the Einstein’s linearised theory
expressed in terms of the hook tensor.
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Appendix A: Degree of freedom count

In this appendix, we at first explain the recipe for the degree
of freedom (DoF) counting proposed in the article [24]. For
the sake of simplicity, the explanations are adjusted for the
context of the problem addressed in the present work. In par-
ticular, we consider here only linear systems of field equa-
tions, while the article [24] deals with any field theory. Then,
making use of this recipe, we count the DoF for the Nord-
ström equation and for the dual equations (27) for the spin
two.

Consider the set of fields φi subject to a system of linear
field equations,

Tai (∂) φi = 0 . (A1)

The matrix of the wave operator Tai (∂) has the elements
being polynomials in ∂ . Once the classical dynamics of the
fields are completely defined by the field equations, the struc-
ture of polynomials Tai (∂) encodes all the relevant data about
the theory, including the DoF number. Let us explain how the
DoF number can be extracted from the structure of the poly-
nomials T (∂).

At first, the system (A1) is assumed involutive, i.e. it
should not admit the lower order differential consequences.
Of course, not every reasonable system of linear field equa-
tions is involutive from the outset. For example, the second
order Proca equations for the massive spin one field are not
involutive as the first order consequence exists being the
transversality condition,

(
(� − m2)ημν − ∂μ∂ν

)
Aν = 0 ⇒ m2∂μA

μ = 0 . (A2)

If the original system is not involutive, it can be brought to the
involution by inclusion of all the lower order consequences.
So, the assumption that the system (A1) is involutive does not
restrict generality once any system can be equivalently refor-
mulated in the involutive form. The DoF counting, however,
proceeds from the involutive form of the equations.

Every Eq. (A1) labelled by the index a has the order ta
which is understood as the maximal order of the polynomials
Tai for all i ,

ta = max
i

{
ord(Tai )

}
. (A3)

For example, the involutive closure of Proca system (A2)
includes four equations of the second order (the Proca equa-
tions themselves) and one equation of the first order (the
transversality condition).

The wave operator matrix Tai (∂) can admit null-vectors
from the left and from the right,

L A
a(∂) Tai (∂) = 0 , (A4)

Tai (∂)Ri
α(∂) = 0 , (A5)

where L , R are polynomials in ∂ . We assume that LA
a , Ri

α

form the generating sets for the left and right kernel of the
matrix Tai (∂) in the sense that any left- or right- null-vector is
spanned by L A or Rα respectively, with the coefficients being
polynomials in ∂μ. Relations (A4) mean the gauge identities
between the field equations (A1), so L’s are considered as
the generators of identities. Relations (A5) mean the gauge
symmetry transformations generated by R,

δEφi = Ri
α(∂) Eα ,

Tai (∂) δEφi ≡ 0, ∀ Eα . (A6)

Let us now explain how the order is computed of Noether
identities and gauge symmetries. The order of the a-th iden-
tity component of (A4) is defined as the sum of ta (A3) and
the order of polynomial LA

a(∂). Then the total order of the
gauge identity generated by LA is defined as follows:

lA = max
a

{
ta + ord(L A

a)
}
. (A7)

The total order of gauge symmetries (A6) is defined as the
maximal order of the polynomials Rα for all i ,

rα = max
i

{
ord(Ri

α)
}
. (A8)

For the Proca case, there exists a single gauge identity of the
third order,

∂μ
[(

(� − m2)ημν − ∂μ∂ν

)
Aν

] + m2∂μA
μ = 0 , (A9)

and the system has no gauge symmetry.
The gauge identities (A4) and gauge symmetry tranfor-

mations (A5) can be, in general, reducible, i.e. there exist
relations

LA1
A(∂)L A

a(∂) = 0 , (A10)

Ri
α(∂)Rα

α1(∂) = 0 , (A11)

which can be further reducible,

L AkL

AkL−1(∂)L AkL−1
AkL−2(∂) = 0 , (A12)

RαkR−2
αkR−1(∂)RαkR−1

αkR
(∂) = 0 , (A13)

where kL = 2, . . . ,mL , A0 ≡ A, and kR = 2, . . . ,mR , α0 ≡
α. The total orders of gauge identities and gauge symmetries
of the k-th stage of reducibility are defined as follows:

lAk = max
Ak−1

{
lAk−1 + ord(L Ak

Ak−1)
}
,

k = 1, . . . , A0 ≡ A , (A14)
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rαk = max
αk−1

{
rαk−1 + ord(Rαk−1

αk )
}
,

k = 1, . . . , α0 ≡ α . (A15)

The number of DoF for the field equations with reducible
gauge symmetries and/or identities, can be found by the
recipe

N =
∑

a

ta −
∑

k

(−1)k
( ∑

Ak

lAk +
∑

αk

rαk

)
. (A16)

Here, lAk are defined by (A7) and (A14), A0 ≡ A, and rαk
are defined by (A8) and (A15), α0 ≡ α.

For the sake of convenience, the formula (A16) for the
DoF number counting can be rewritten in the form [24]

N =
∑

n

n
(
tn −

∑

m

(−1)m
(
lmn + rmn

))
, (A17)

where tn is the number of equations of order n, and lmn and
rmn are the numbers of gauge identities and gauge symmetries
of total order n and order of reducibility m, respectively. For
example, for the Proca system (A2), t2 = 4, t1 = 1, l03 = 1,
and

N = 1 · 1 + 2 · 4 − 3 · 1 = 6 , (A18)

that gives us the correct DoF number by the phase space
count.

Let us now consider the linearised Nordström gravity
defined by a single second-order equation (2), t2 = 1. The
gauge parameters are represented by traceful tensors with the
symmetry of the hook type, so the number of gauge symme-
try transformations (13), (16)–(17) coincides with the num-
ber of independent component of such tensors. For example,
in d = 4 case, there exist 20 first-order symmetry transfor-
mations of reducibility order 0, r0

1 = 20, 15 second-order
transformations of reducibility order 1, r1

2 = 15, and 4 third-
order transformations of reducibility order 2, r2

3 = 4. So, one
can apply (A17) and get the correct DoF number

N = 2 − 1 · 20 + 2 · 15 − 3 · 4 = 0 . (A19)

For arbitrary d, the number of gauge symmetry transforma-
tions of order n and reducibility order n − 1 corresponds to
the number of independent components of the traceful hook
symmetry type tensors with n + 2 indices, i.e.

rn−1
n = (n + 1)(d + 1)!

(n + 2)!(d − n − 1)! , (A20)

where n = 1, . . . , d − 1. The formula (A17) reads

N = 2 −
d−1∑

n=1

(−1)n
n(n + 1)(d + 1)!

(n + 2)!(d − n − 1)! = 0 . (A21)

For the dual form of the spin two theory formulated in
terms of hooks (27), the formula for DoF number counting
(A17) gives us the correct answer for the spin two field by
phase space count, N = d2 − 3d. Let us demonstrate this
computation for d = 4. Then, in (A17) t3 = 9, l04 = 4,
r0

1 = 15, r1
2 = 4 (see (27), (28), and (16)–(17)), and

N = 3 · 9 − 4 · 4 − 1 · 15 + 2 · 4 = 4 , (A22)

that corresponds to two polarisations.
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