145 research outputs found

    The Initial Mass Function of the Stellar Association NGC 602 in the Small Magellanic Cloud with Hubble Space Telescope ACS Observations

    Full text link
    We present our photometric study of the stellar association NGC 602 in the wing of the Small Magellanic Cloud (SMC). The data were taken in the filters F555W and F814W using the Advanced Camera for Surveys (ACS) on-board the Hubble Space Telescope (HST). Photometry was performed using the ACS module of the stellar photometry package DOLPHOT. We detected more than 5,500 stars with a magnitude range of 14 \lsim m_{555} \lsim 28 mag. Three prominent stellar concentrations are identified with star counts in the observed field, the association NGC 602 itself, and two clusters, one of them not being currently in any known catalog. The Color-Magnitude Diagrams (CMDs) of both clusters show features typical for young open clusters, while that of the association reveals bright main sequence (MS) and faint pre-main sequence (PMS) stars as the members of the system. We construct the initial mass spectrum (IMS) of the association by applying an age-independent method of counting the PMS stars within evolutionary tracks, while for the bright MS stars we transform their magnitudes to masses with the use of mass-luminosity relations. The IMS of NGC 602 is found to be well represented by a single-power law, corresponding to an Initial Mass Function (IMF) of slope \Gamma\approx -1.2 for 1 \lsim M/M{\solar} \lsim 45. This indicates that the shape of the IMF of a star forming system in the SMC for stars with masses higher than 1 M{\solar} seems to be quite similar to the field IMF in the solar neighborhood.Comment: Accepted for publication in ApJ, 13 pages, 14 figures, emulateapj.cls LaTeX style, full resolution version available on http://www.astro.uni-bonn.de/~dgoulier/Science/NGC602/ms.pd

    History and modes of star formation in the most active region of the Small Magellanic Cloud, NGC 346

    Get PDF
    We discuss the star formation history of the SMC region NGC 346 based on Hubble Space Telescope images. The region contains both field stars and cluster members. Using a classical synthetic CMD procedure applied to the field around NGC 346 we find that there the star formation pace has been rising from a quite low rate 13 Gyr ago to \approx 1.4 \times 10^{-8} Mo yr^{-1}pc^{-2} in the last 100 Myr. This value is significantly higher than in other star forming regions of the SMC. For NGC 346 itself, we compare theoretical and observed Color-Magnitude Diagrams (CMDs) of several stellar sub-clusters identified in the region, and we derive their basic evolution parameters. We find that NGC 346 experienced different star formation regimes, including a dominant and focused "high density mode", with the sub-clusters hosting both pre-main sequence (PMS) and upper main sequence (UMS) stars, and a diffuse "low density mode", as indicated by the presence of low-mass PMS sub-clusters. Quantitatively, the star formation in the oldest sub-clusters started about 6 Myr ago with remarkable synchronization, it continued at high rate (up to 2 \times 10^{-5} Mo yr^{-1} pc^{-2}) for about 3 Myr and is now progressing at a lower rate. Interestingly, sub-clusters mainly composed by low mass PMS stars seem to experience now the first episode of star formation, following multi-seeded spatial patterns instead of resulting from a coherent trigger. Two speculative scenarios are put forth to explain the deficiency of UMS stars: the first invokes under-threshold conditions of the parent gas; the second speculates that the initial mass function (IMF) is a function of time, with the youngest sub-clusters not having had sufficient time to form more massive stars.Comment: 17 pages. Accepted for publication in A

    NGC 346 in the Small Magellanic Cloud. III. Recent Star Formation and Stellar Clustering Properties in the Bright HII Region N 66

    Full text link
    In the third part of our photometric study of the star-forming region NGC 346/N~66 and its surrounding field in the Small Magellanic Cloud (SMC), we focus on the large number of low-mass pre-main sequence (PMS) stars revealed by the Hubble Space Telescope Observations with the Advanced Camera for Surveys. We investigate the origin of the observed broadening of the pre-main sequence population in the V−IV-I, VV CMD. The most likely explanations are either the presence of differential reddening or an age spread among the young stars. Assuming the latter, simulations indicate that we cannot exclude the possibility that stars in NGC 346 might have formed in two distinct events occurring about 10 and 5 Myr ago, respectively. We find that the PMS stars are not homogeneously distributed across NGC 346, but instead are grouped in at least five different clusters. On spatial scales from 0.8â€Čâ€Č'' to 8â€Čâ€Č'' (0.24 to 2.4 pc at the distance of the SMC) the clustering of the PMS stars as computed by a two-point angular correlation function is self-similar with a power law slope γ≈−0.3\gamma \approx -0.3. The clustering properties are quite similar to Milky Way star forming regions like Orion OB or ρ\rho Oph. Thus molecular cloud fragmentation in the SMC seems to proceed on the same spatial scales as in the Milky Way. This is remarkable given the differences in metallicity and hence dust content between SMC and Milky Way star forming regions.Comment: Accepted for publication in ApJ. 16 pages, 13 (low-resolution) figures, emulateapj.cls LaTeX styl

    A Hubble View of Star Forming Regions in the Magellanic Clouds

    Full text link
    The Magellanic Clouds (MCs) offer an outstanding variety of young stellar associations, in which large samples of low-mass stars (with masses less than 1 solar mass) currently in the act of formation can be resolved and explored sufficiently with the Hubble Space Telescope. These pre-main sequence (PMS) stars provide a unique snapshot of the star formation process, as it is being recorded for the last 20 Myr, and they give important information on the low-mass Initial Mass Function (IMF) of their host environments. We present the latest results from observations with the Advanced Camera for Surveys (ACS) of such star-forming regions in the MCs, and discuss the importance of Hubble}for a comprehensive collection of substantial information on the most recent low-mass star formation and the low-mass IMF in the MCs.Comment: To appear in the proceedings of the 41st ESLAB Symposium: The Impact of HST on European Astronomy, 4 pages, LaTeX ESA Publications style, 5 Figure

    Uniform detection of the pre-main sequence population in the 5 embedded clusters related to the H\,II region NGC\,2174 (Sh2-252)

    Get PDF
    We investigate 5 embedded clusters (ECs) and the extended stellar group itself of the prominent H\,II region NGC\,2174 (Sh2-252), which presents scarce and heterogeneous information, coming from the optical and infrared. Considering the discrepant values of distance and age, the clusters and the H\,II region appear to be physically unrelated. The analysis is based on field-star decontaminated 2MASS photometry, which allows sampling the pre-main sequence (PMS). We find that Sh2-252A, C, E, NGC\,2175s, and Teu\,136 are small ECs (radius within 1.0−2.31.0 - 2.3\,pc) characterised by a similar age (∌5\sim5\,Myr), reddening (\aV\sim1), distance from the Sun (\ds\sim1.4\,kpc), and low mass (60-200\,\ms). This age is consistent with the H\,II region, the presence of O and B stars still in the MS, and the dominance (\ga95% in number) of PMS stars in colour-magnitude diagrams (CMDs). NGC\,2175 is not a star cluster, but an extended stellar group that encompasses the ECs Sh2-252\,A and C. It contains ∌36\sim36% of the member stars (essentially PMS) in the area, with the remaining belonging to the 2 ECs. CMDs of the overall star-forming region and the ECs provide \ds=1.4\pm0.4\,kpc for the NGC\,2174 complex, consistent with the value estimated for the physically-related association Gem\,OB1. Our uniform approach shows that NGC\,2174 and its related ECs (except, perhaps, for Teu\,136) are part of a single star-forming complex. CMD similarities among the ECs and the overall region suggest a coeval (to within ±5\pm5\,Myr) star-forming event extending for several Myr. At least 4 ECs originated in the event, together with the off-cluster star formation that probably gave rise to the scattered stars of NGC\,2175.Comment: Accepted by MNRA

    Star formation history in the SMC: the case of NGC602

    Get PDF
    Deep HST/ACS photometry of the young cluster NGC 602, located in the remote low density "wing" of the Small Magellanic Cloud, reveals numerous pre-main sequence stars as well as young stars on the main sequence. The resolved stellar content thus provides a basis for studying the star formation history into recent times and constraining several stellar population properties, such as the present day mass function, the initial mass function and the binary fraction. To better characterize the pre-main sequence population, we present a new set of model stellar evolutionary tracks for this evolutionary phase with metallicity appropriate for the Small Magellanic Cloud (Z = 0.004). We use a stellar population synthesis code, which takes into account a full range of stellar evolution phases to derive our best estimate for the star formation history in the region by comparing observed and synthetic color-magnitude diagrams. The derived present day mass function for NGC 602 is consistent with that resulting from the synthetic diagrams. The star formation rate in the region has increased with time on a scale of tens of Myr, reaching 0.3−0.7×10−3M⊙yr−10.3-0.7 \times 10^{-3} M_\odot yr^{-1} in the last 2.5 Myr, comparable to what is found in Galactic OB associations. Star formation is most complete in the main cluster but continues at moderate levels in the gas-rich periphery of the nebula.Comment: 24 pages. Accepted for publication in A

    VLT/NACO near-infrared imaging and spectroscopy of N88A in the SMC

    Full text link
    We present near-infrared imaging and spectroscopic high spatial resolution observations of the SMC region N88 containing the bright, excited, extincted and compact H II region N88A of size ~ 1 pc. To investigate its stellar content and reddening, N88 was observed using spectroscopy and imagery in the JHKs- and L'-band at a spatial resolution of ~ 0.1-0.3", using the VLT UT4 equipped with the NAOS adaptive optics system. In order to attempt to establish if the origin of the infra-red (IR) excess is due to bright nebulosity, circumstellar material and/or local dust, we used Ks vs J-K colour-magnitude (CM) and JHK colour-colour (CC) diagrams, as well as L' imagery.Our IR-data reveal in the N88 area an IR-excess fraction of geq 30 per cent of the detected stars,as well as an unprecedently detailed morphology of N88A. It consists of an embedded cluster of ~3.5" (~ 1 pc) in diameter, of at least thirteen resolved stars superposed with an unusual bright continuum centered on a very bright star. The four brightest stars in this cluster lie red-ward of H-K geq 0.45 mag, and could be classified as young stellar object (YSO) candidates. Four other probable YSO candidates are also detected in N88 along a south-north bow-shaped thin H2 filament at ~ 7" east of the young central bright star. At 0.2" east of this star, a heavily embedded core is detected that could be a massive class I protostar candidate. The 2.12 mu H2 image of N88A resembles a shell of diameter ~ 3" ~ 0.9 pc) centered on the bright star. The line ratios of H2 2-1 S(1) and 1-0 S(0) relative to 1-0 S(1), as well as the presence of high v lines, are indicative of photodissociation regions, rather than shocks.Comment: 15 pages, 14 figures, accepted by Astronomy and Astrophysics, uses pdflatex, aa.cl

    Pre--Main-Sequence stellar populations across Shapley Constellation III. I. Photometric Analysis and Identification

    Full text link
    We present our investigation of pre--main-sequence (PMS) stellar populations in the Large Magellanic Cloud (LMC) from imaging with Hubble Space Telescope WFPC2 camera. Our targets of interest are four star-forming regions located at the periphery of the super-giant shell LMC 4 (Shapley Constellation III). The PMS stellar content of the regions is revealed through the differential Hess diagrams and the observed color-magnitude diagrams (CMDs). Further statistical analysis of stellar distributions along cross-sections of the faint part of the CMDs allowed the quantitative assessment of the PMS stars census, and the isolation of faint PMS stars as the true low-mass stellar members of the regions. These distributions are found to be well represented by a double Gaussian function, the first component of which represents the main-sequence field stars and the second the native PMS stars of each region. Based on this result, a cluster membership probability was assigned to each PMS star according to its CMD position. The higher extinction in the region LH 88 did not allow the unambiguous identification of its native stellar population. The CMD distributions of the PMS stars with the highest membership probability in the regions LH 60, LH 63 and LH 72 exhibit an extraordinary similarity among the regions, suggesting that these stars share common characteristics, as well as common recent star formation history. Considering that the regions are located at different areas of the edge of LMC 4, this finding suggests that star formation along the super-giant shell may have occurred almost simultaneously.Comment: Accepted for publication in the Astrophysical Journal. 19 pages, 19 figures (three omitted due to size limitations, without affecting the comprehension of the manuscript

    Resolved photometry of extragalactic young massive star clusters

    Full text link
    We present colour-magnitude diagrams (CMDs) for a sample of seven young massive clusters in the galaxies NGC 1313, NGC 1569, NGC 1705, NGC 5236 and NGC 7793. The clusters have ages in the range 5-50 million years and masses of 10^5 -10^6 Msun. Although crowding prevents us from obtaining photometry in the central regions of the clusters, we are still able to measure up to 30-100 supergiant stars in each of the richest clusters, along with the brighter main sequence stars. The resulting CMDs and luminosity functions are compared with photometry of artificially generated clusters, designed to reproduce the photometric errors and completeness as realistically as possible. In agreement with previous studies, our CMDs show no clear gap between the H-burning main sequence and the He-burning supergiant stars, contrary to predictions by common stellar isochrones. In general, the isochrones also fail to match the observed number ratios of red-to-blue supergiant stars, although the difficulty of separating blue supergiants from the main sequence complicates this comparison. In several cases we observe a large spread (1-2 mag) in the luminosities of the supergiant stars that cannot be accounted for by observational errors. This spread can be reproduced by including an age spread of 10-30 million years in the models. However, age spreads cannot fully account for the observed morphology of the CMDs and other processes, such as the evolution of interacting binary stars, may also play a role.Comment: 15 pages, 12 figures, accepted for publication in A&

    Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters

    Full text link
    Recent progress in studies of globular clusters has shown that they are not simple stellar populations, being rather made of multiple generations. Evidence stems both from photometry and spectroscopy. A new paradigm is then arising for the formation of massive star clusters, which includes several episodes of star formation. While this provides an explanation for several features of globular clusters, including the second parameter problem, it also opens new perspectives about the relation between globular clusters and the halo of our Galaxy, and by extension of all populations with a high specific frequency of globular clusters, such as, e.g., giant elliptical galaxies. We review progress in this area, focusing on the most recent studies. Several points remain to be properly understood, in particular those concerning the nature of the polluters producing the abundance pattern in the clusters and the typical timescale, the range of cluster masses where this phenomenon is active, and the relation between globular clusters and other satellites of our Galaxy.Comment: In press (The Astronomy and Astrophysics Review
    • 

    corecore