253 research outputs found

    The variance shared across forms of childhood trauma is strongly associated with liability for psychiatric and substance use disorders

    Get PDF
    Introduction: Forms of childhood trauma tend to co-occur and are associated with increased risk for psychiatric and substance use disorders. Commonly used binary measures of trauma exposure have substantial limitations. Methods: We performed multigroup confirmatory factor analysis (CFA), separately by sex, using data from the Childhood Trauma (CT) Study's sample of twins and siblings (N = 2594) to derive three first-order factors (childhood physical abuse, childhood sexual abuse, and parental partner abuse) and, as hypothesized, one higher order, childhood trauma factor (CTF) representing a measure of their common variance. Results: CFA produced a good-fitting model in the CT Study; we replicated the model in the Comorbidity and Trauma (CAT) Study's sample (N = 1981) of opioid-dependent cases and controls. In both samples, first-order factors are moderately correlated (indicating they measure largely unique, but related constructs) and their loadings on the CTF suggest it provides a reasonable measure of their common variance. We examined the association of CTF score with risk for psychiatric and substance use disorders in these samples and the OZ-ALC GWAS sample (N = 1538) in which CT Study factor loadings were applied. We found that CTF scores are strongly associated with liability for psychiatric and substance use disorders in all three samples; estimates of risk are extremely consistent across samples. Conclusions: The CTF is a continuous, robust measure that captures the common variance across forms of childhood trauma and provides a means to estimate shared liability while avoiding multicollinearity. Confirmatory factor analysis was used to derive a higher order, childhood trauma factor representing a measure of the common variance across three forms of trauma: childhood physical abuse, childhood sexual abuse, and parental partner abuse. We replicated the model in a second sample. We then examined the association of childhood trauma score with risk for psychiatric and substance use disorders in these samples and a third sample in which the primary sample's factor loadings were applied finding factor scores to be strongly and consistently associated with liability for psychiatric and substance use disorders in all three samples

    ANKK1, TTC12, and NCAM1 polymorphisms and heroin dependence: importance of considering drug exposure

    Get PDF
    Context: The genetic contribution to liability for opioid dependence is well established; identification of the responsible genes has proved challenging. Objective: To examine association of 1430 candidate gene single-nucleotide polymorphisms (SNPs)with heroin dependence, reporting here only the 71 SNPs in the chromosome 11 gene cluster (NCAM1, TTC12, ANKK1, DRD2) that include the strongest observed associations. Design: Case-control genetic association study that included 2 control groups (lacking an established optimal control group). Setting: Semistructured psychiatric interviews. Participants: A total of 1459 Australian cases ascertained from opioid replacement therapy clinics, 531 neighborhood controls ascertained from economically disadvantaged areas near opioid replacement therapy clinics, and 1495 unrelated Australian Twin Registry controls not dependent on alcohol or illicit drugs selected from a twin and family sample. Main Outcome Measure: Lifetime heroin dependence. Results: Comparison of cases with Australian Twin Registry controls found minimal evidence of association for all chromosome 11 cluster SNPs (P≥.01); a similar comparison with neighborhood controls revealed greater differences (P≥1.8×10-4). Comparing cases (n=1459) with the subgroup of neighborhood controls not dependent on illicit drugs (n=340), 3 SNPs were significantly associated (correcting for multiple testing): ANKK1 SNP rs877138 (most strongly associated; odds ratio=1.59; 95% CI, 1.32-1.92; P=9.7×10-7), ANKK1 SNP rs4938013, and TTC12 SNP rs7130431. A similar pattern of association was observed when comparing illicit drug-dependent (n=191) and nondependent (n=340) neighborhood controls, suggesting that liability likely extends to nonopioid illicit drug dependence. Aggregate heroin dependence risk associated with 2 SNPs, rs877138 and rs4492854 (located in NCAM1), varied more than 4-fold (P=2.7×10-9 for the risk-associated linear trend). Conclusions: Our results provide further evidence of association for chromosome 11 gene cluster SNPs with substance dependence, including extension of liability to illicit drug dependence. Our findings highlight the necessity of considering drug exposure history when selecting control groups for genetic investigations of illicit drug dependence

    Genome-Wide Association Reveals Pigmentation Genes Play a Role in Skin Aging

    Get PDF
    Loss of fine skin patterning is a sign of both aging and photoaging. Studies investigating the genetic contribution to skin patterning offer an opportunity to better understand a trait that influences both physical appearance and risk of keratinocyte skin cancer. We undertook a meta-analysis of genome-wide association studies (GWAS) of a measure of skin pattern (microtopography score) damage in 1,671 twin pairs and 1,745 singletons (N = 5,087) drawn from three independent cohorts. We identified that rs185146 near SLC45A2 is associated with a skin aging trait (p = 4.1 × 10-9); to our knowledge this is previously unreported. We also confirm previously identified loci, rs12203592 near IRF4 (p = 8.8 × 10-13), and rs4268748 near MC1R (p = 1.2 × 10-15). At all three loci we highlight putative functionally relevant SNPs. There are a number of red hair/low pigmentation alleles of MC1R; we found that together these MC1R alleles explained 4.1% of variance in skin pattern damage. We also show that skin aging and reported experience of sunburns was proportional to the degree of penetrance for red hair of alleles of MC1R. Our work has uncovered genetic contributions to skin aging and confirmed previous findings, showing that pigmentation is a critical determinate of skin aging

    Serum cholesterol and variant in cholesterol-related gene CETP predict white matter microstructure

    Get PDF
    Several common genetic variants influence cholesterol levels, which play a key role in overall health. Myelin synthesis and maintenance are highly sensitive to cholesterol concentrations, and abnormal cholesterol levels increase the risk for various brain diseases, including Alzheimer's disease. We report significant associations between higher serum cholesterol (CHOL) and high-density lipoprotein levels and higher fractional anisotropy in 403 young adults (23.8 ± 2.4years) scanned with diffusion imaging and anatomic magnetic resonance imaging at 4Tesla. By fitting a multi-locus genetic model within white matter areas associated with CHOL, we found that a set of 18 cholesterol-related, single-nucleotide polymorphisms implicated in Alzheimer's disease risk predicted fractional anisotropy. We focused on the single-nucleotide polymorphism with the largest individual effects, CETP (rs5882), and found that increased G-allele dosage was associated with higher fractional anisotropy and lower radial and mean diffusivities in voxel-wise analyses of the whole brain. A follow-up analysis detected white matter associations with rs5882 in the opposite direction in 78 older individuals (74.3 ± 7.3years). Cholesterol levels may influence white matter integrity, and cholesterol-related genes may exert age-dependent effects on the brain

    Germline variants are associated with increased primary melanoma tumor thickness at diagnosis

    Get PDF
    Germline genetic variants have been identified, which predispose individuals and families to develop melanoma. Tumor thickness is the strongest predictor of outcome for clinically localized primary melanoma patients. We sought to determine whether there is a heritable genetic contribution to variation in tumor thickness. If confirmed, this will justify the search for specific genetic variants influencing tumor thickness. To address this, we estimated the proportion of variation in tumor thickness attributable to genome-wide genetic variation (variant-based heritability) using unrelated patients with measured primary cutaneous melanoma thickness. As a secondary analysis, we conducted a genome-wide association study (GWAS) of tumor thickness. The analyses utilized 10 604 individuals with primary cutaneous melanoma drawn from nine GWAS datasets from eight cohorts recruited from the general population, primary care and melanoma treatment centers. Following quality control and filtering to unrelated individuals with study phenotypes, 8125 patients were used in the primary analysis to test whether tumor thickness is heritable. An expanded set of 8505 individuals (47.6% female) were analyzed for the secondary GWAS meta-analysis. Analyses were adjusted for participant age, sex, cohort and ancestry. We found that 26.6% (SE 11.9%, P = 0.0128) of variation in tumor thickness is attributable to genome-wide genetic variation. While requiring replication, a chromosome 11 locus was associated (P < 5 × 10-8) with tumor thickness. Our work indicates that sufficiently large datasets will enable the discovery of genetic variants associated with greater tumor thickness, and this will lead to the identification of host biological processes influencing melanoma growth and invasion.E.M. was supported by the Malaysian Ministry of Higher Education and Universiti Sains Malaysia to study for a PhD at the University of Leeds. A.E.C. was supported by a National Health and Medical Research Council (NHMRC) of Australia Career Development Fellowship (1147843). K.K. was supported by an NHMRC Career Development Fellowship (1125290). M.M.I. was supported by Cancer Research UK (c588/a19167) and the NIH (ca083115). R.A.S. and G.V.L. are supported by NHMRC Practitioner Fellowships; R.A.S. and J.F.T. also acknowledge support from an NHMRC program grant. D.C.W., S.M. and N.K.H were supported by NHMRC Research Fellowships (1058522, 1155413, 1154543 and 1117663). We thank Nicholas G. Martin for assistance with access to data from the Q-MEGA cohort and with manuscript writing. This work was conducted using the UK Biobank Resource (application number 25331)

    Fine-mapping of the HNF1B multicancer locus identifies candidate variants that mediate endometrial cancer risk.

    Get PDF
    Common variants in the hepatocyte nuclear factor 1 homeobox B (HNF1B) gene are associated with the risk of Type II diabetes and multiple cancers. Evidence to date indicates that cancer risk may be mediated via genetic or epigenetic effects on HNF1B gene expression. We previously found single-nucleotide polymorphisms (SNPs) at the HNF1B locus to be associated with endometrial cancer, and now report extensive fine-mapping and in silico and laboratory analyses of this locus. Analysis of 1184 genotyped and imputed SNPs in 6608 Caucasian cases and 37 925 controls, and 895 Asian cases and 1968 controls, revealed the best signal of association for SNP rs11263763 (P = 8.4 × 10(-14), odds ratio = 0.86, 95% confidence interval = 0.82-0.89), located within HNF1B intron 1. Haplotype analysis and conditional analyses provide no evidence of further independent endometrial cancer risk variants at this locus. SNP rs11263763 genotype was associated with HNF1B mRNA expression but not with HNF1B methylation in endometrial tumor samples from The Cancer Genome Atlas. Genetic analyses prioritized rs11263763 and four other SNPs in high-to-moderate linkage disequilibrium as the most likely causal SNPs. Three of these SNPs map to the extended HNF1B promoter based on chromatin marks extending from the minimal promoter region. Reporter assays demonstrated that this extended region reduces activity in combination with the minimal HNF1B promoter, and that the minor alleles of rs11263763 or rs8064454 are associated with decreased HNF1B promoter activity. Our findings provide evidence for a single signal associated with endometrial cancer risk at the HNF1B locus, and that risk is likely mediated via altered HNF1B gene expression

    Meta-analysis of genome-wide association studies of anxiety disorders.

    Get PDF
    Anxiety disorders (ADs), namely generalized AD, panic disorder and phobias, are common, etiologically complex conditions with a partially genetic basis. Despite differing on diagnostic definitions based on clinical presentation, ADs likely represent various expressions of an underlying common diathesis of abnormal regulation of basic threat-response systems. We conducted genome-wide association analyses in nine samples of European ancestry from seven large, independent studies. To identify genetic variants contributing to genetic susceptibility shared across interview-generated DSM-based ADs, we applied two phenotypic approaches: (1) comparisons between categorical AD cases and supernormal controls, and (2) quantitative phenotypic factor scores (FS) derived from a multivariate analysis combining information across the clinical phenotypes. We used logistic and linear regression, respectively, to analyze the association between these phenotypes and genome-wide single nucleotide polymorphisms. Meta-analysis for each phenotype combined results across the nine samples for over 18 000 unrelated individuals. Each meta-analysis identified a different genome-wide significant region, with the following markers showing the strongest association: for case-control contrasts, rs1709393 located in an uncharacterized non-coding RNA locus on chromosomal band 3q12.3 (P=1.65 × 10(-8)); for FS, rs1067327 within CAMKMT encoding the calmodulin-lysine N-methyltransferase on chromosomal band 2p21 (P=2.86 × 10(-9)). Independent replication and further exploration of these findings are needed to more fully understand the role of these variants in risk and expression of ADs.Molecular Psychiatry advance online publication, 12 January 2016; doi:10.1038/mp.2015.197
    corecore