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Abstract (170 words, max. 170)  

Several common genetic variants influence cholesterol levels, which play a key role in overall health. Myelin synthesis 

and maintenance are highly sensitive to cholesterol concentrations, and abnormal cholesterol levels increase the risk for 

various brain diseases, including Alzheimer’s disease (AD). We report significant associations between higher serum 

cholesterol (CHOL) levels and high-density lipoproteins (HDL) and higher fractional anisotropy in 403 young adults 

(23.8±2.4 years) scanned with diffusion imaging and anatomical MRI at 4 Tesla. By fitting a multi-locus genetic model 

within white matter areas associated with CHOL, we found that a set of 18 cholesterol-related SNPs implicated in AD 

risk predicted FA. We focused on the SNP with the largest individual effects - CETP (rs5882) – and found that increased 

G-allele dosage was associated with higher FA and lower radial and mean diffusivities in voxel-wise analyses of the 

whole brain. A follow-up analysis detected WM associations with rs5882 in the opposite direction in 78 older 

individuals (74.3±7.3 years). Cholesterol levels may influence WM integrity, and cholesterol-related genes may exert 

age-dependent effects. 

 

Key Words: brain structure, DTI, imaging genetics, cholesterol, development, aging 
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Introduction  

 Nearly a quarter of the body’s cholesterol lies in the central nervous system (CNS) (Dietschy & Turley, 2004), 

where it serves as the rate-limiting factor for myelin biosynthesis (Saher et al., 2005). The available pool of cholesterol in 

the brain also governs CNS synaptogenesis (Mauch et al., 2001). Thus, cholesterol is essential for brain maturation and 

white matter (WM) development, and decreased cholesterol early in life may limit both the number and efficacy of 

synapses. CNS cholesterol concentration is largely independent of serum cholesterol levels due to the low permeability 

of cholesterol through the blood brain barrier (Saher & Simons, 2010). Even so, changes in serum concentrations have 

been associated with variations in the healthy brain’s WM structure (Cohen et al., 2011; Williams et al., 2013).    

 The WM fiber structure of the living human brain can be assessed non-invasively using diffusion tensor imaging 

(DTI). DTI has been used to both characterize patterns of the developing brain (Hüppi & Dubois, 2006; Tamnes et al., 

2010) and to demonstrate differences between healthy and unhealthy brains in many disease processes (Le Bihan et al., 

2001; Nir et al., 2013). Regional differences in DTI-derived WM metrics are highly heritable (Jahanshad et al., 2013; Jin 

et al., 2011; Thomason & Thompson, 2011) and are associated with differences in a variety of factors including serum 

biomarker measures (Jahanshad et al., 2012) and cognitive performance (Chiang et al., 2009; Grieve et al., 2007; 

Kochunov et al., 2010).  

 Variations in plasma lipid and lipoprotein levels are also highly heritable, and differences even within the healthy 

range of cholesterol values may exert influence over the brain. 40%-60% of the normal variation in total cholesterol 

(CHOL), high-density lipoprotein (HDL), and low-density lipoprotein (LDL) concentrations are attributable to genetic 

influences (Asselbergs et al., 2012), and several genetic variants have been identified that are associated with lipoprotein 

levels (Asselbergs et al., 2013). Cholesterol levels may have age-dependent effects on cognition, suggesting a changing 

need for cholesterol in the brain over the lifespan.  Multiple studies suggest that higher cholesterol levels in younger 

adults may be associated with higher fluid intelligence (speed and/or flexibility of mental processing) (Waldstein, 2001). 

Specifically, university undergraduate students with higher serum cholesterol levels showed faster decision-making and 

movement times on a choice reaction time test (Benton, 1995), and non-elderly adults with higher cholesterol levels 

performed better on the WAIS-R Block Design test, which requires rapid, adaptive problem solving skills (Waldstein, 

2001). While some studies similarly correlate lower cholesterol with poorer executive function in older adults (Elias et 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 4

al., 2005; Manilio et al., 1993), late-life hypercholesterolemia is strongly associated with an increased risk for 

Alzheimer’s disease (Refolo et al., 2000; Shobab et al., 2005) – a neurodegenerative disease characterized by cognitive 

deficit (Derouesné et al., 1999). In general, faster processing and motor speeds are associated with higher FA (Aukema et 

al., 2009; Chiang et al., 2009), and poorer cognitive performance in executive tasks is associated with lower FA (Grieve 

et al., 2007). As cognition is associated with cholesterol levels as well as differences in WM, we hypothesize that 

cholesterol concentration also predict white matter microstructure. 

 Currently, the role of the serum cholesterol and cholesterol gene variants on brain development and risk for 

disease are not well understood. As WM continues to mature well beyond age 30 (Bartzokis et al., 2004; Kochunov et 

al., 2010; Tamnes et al., 2010), we set out to determine whether serum cholesterol concentrations measured during 

adolescence (mean age: 15) might predict WM integrity almost a decade later in early adulthood (mean age: 24) in a 

large cohort of 403 healthy individuals. We further hypothesized that genetic risk factors for high cholesterol, 

particularly those with known neurological associations, might relate to WM microstructure, as defined by FA and mean, 

radial, and axial diffusivity measures, and that these same specific genetic variants would be associated with axonal 

integrity in an independent sample of elderly adults. Our goal was to determine if serum cholesterol levels and common 

cholesterol-related genetic variants were associated with white matter (WM) microstructural integrity, and, further, if the 

relationship differed in younger and older age groups. 

 

Materials and Methods 

 We examined two different cohorts – young Australian twins (the QTIM cohort) and elderly individuals scanned 

across North America as part of the Alzheimer’s Disease Neuroimaging Initiative (ADNI). An overview of the analyses 

performed in each of these cohorts is summarized in Supplementary Figure 1.  

QTIM Cohort.   

The QTIM (Queensland Twin IMaging study) is a project recruiting healthy Australian twins, to identify genes 

influencing brain health and to better understand genetic factors that affect the brain. Participants were excluded if they 

had a history of significant head injury, neurological or psychiatric illness, substance abuse or dependence, or had a first-

degree relative with a psychiatric disorder. Participants were also assessed with a range of cognitive tasks. Handedness 
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was assessed using 12 items from Annett's Handedness Questionnaire (Annett, 1970). Our study included 403 right-

handed, Caucasian participants (146 men/257 women). Their mean age was 23.8 years (SD: 2.4).  

Determining Cholesterol Levels  

Multiple (average 2.2, SD 1.0) non-fasting serum cholesterol samples were collected from 449 scanned 

participants in the QTIM study. Lipid measurements were assessed at 12, 14, and/or 16 years old. If multiple measures 

were available for any given subject, the cholesterol values – and, separately, the ages at measurement – were averaged. 

The participants’ mean age at the time of the cholesterol measurements was 15.2 years (SD 2.3). The lipid panel directly 

measured total cholesterol (CHOL) and high-density lipoprotein (HDL) levels; low-density lipoprotein (LDL) was 

indirectly calculated (and will thus be referred to as LDL-c) from the Friedewald equation (Warnick et al., 1990): 

   LDL - c = CHOL− HDL − (Triglycerides 5)   Eq. 1.   

Measuring lipid levels in the fasting state is typical, but some studies argue that this may be detrimental to accurate risk 

assessment based on blood lipid levels (Langsted et al., 2008; Mora et al., 2008). Proponents of fasting lipid 

measurements often cite the increase in triglyceride levels during a fat tolerance test (Schaefer et al., 2001). In a study of 

33,391 individuals, Langsted et al. (2008) reported that non-fasting levels of lipids, lipoproteins, and apolipoproteins 

vary only minimally from levels in the fasting state. Furthermore, multiple averaged non-fasting measures may better 

reflect the body’s typical lipid profile, as more time is spent in the post-absorptive state than the “fasting” state. In the 

same study, non-fasting LDL-c differed only slightly from fasting measures, but was more useful for predicting risk of 

cardiovascular events. Thus non-fasting CHOL, HDL, and LDL-c were all analyzed in the present study.  

Selection of Genes of Interest  

In a genome-wide association study (GWAS) of 66,240 individuals, Asselbergs et al. (2012) found 945 single 

nucleotide polymorphisms (SNPs) involved in cholesterol metabolism, 170 of which were genotyped as part of the 

Illumina Quad-610 BeadChip in our QTIM cohort (genotyping protocol is available in the Supplementary Methods.). 

We eliminated SNPs with a minor allele frequency (MAF) < 0.2236 or a linkage disequilibrium (LD) > 0.4 to assure that 

the homozygous minor allele carriers always represented at least 5% of our population, and that associations found were 

independent of variations in other SNPs included in the model. All SNPs passing the initial inclusion criteria (genotyped 

with passing MAFs and LDs) were included in keyword searches using Google Scholar to search for prior reports of 
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associations with Alzheimer’s disease. Of these, 18 SNPs had been associated with AD, and were included as SNPs of 

interest in our study (Astarita et al., 2010; Baum et al., 1999; Dzamko, 2011; Gustafsen et al., 2013; Ikeda & Yamada, 

2010; Kysenius et al., 2012; Lamsa et al., 2008; Mulder et al., 2012; Natunen et al., 2012; Page et al., 2012; Rodriguez-

Rodriguez et al., 2009; Roses et al., 2010; Solfrizzi et al., 2002; Vuletic et al., 2003; Wollmer et al., 2003; Xiao et al., 

2012). The SNPs we included are summarized in Table 1.  

[Table 1] 

These joint cholesterol-Alzheimer’s SNPs were then entered into a multi-locus analysis to examine whether they had a 

collective effect in predicting white matter microstructural integrity. 

Cholesterol Analysis 

A general flow diagram of our hypotheses is shown in Figure 1.  

[Figure 1] 

A random-effects model was used to study the statistical significance of plasma cholesterol values (CHOL, HDL, and 

LDL-c) voxelwise on regional white matter, while co-varying for age and sex. Multiple comparisons corrections were 

used to control for false positives.  

Multi-SNP Analysis 

 Linear mixed-effects models were used to study the joint associations of SNPs with imaging measures, 

accounting for kinship among participants (Kohannim et al., 2012) using the efficient mixed-model association (EMMA; 

http://mouse.cs.ucla.edu/emma/) software with restricted maximum likelihood estimation (Kang et al., 2008). This 

analysis was carried out within the voxels associated with CHOL in the previous analysis. Arguably, the effects of 

cholesterol-related SNPs on the brain may be more likely to be detected at locations where a serum cholesterol 

association has already been detected. Such a relationship was found in a voxel-wise FA analysis of serum iron levels 

and iron transport genes (Jahanshad et al., 2012). Otherwise, heavy multiple comparisons corrections are required to 

adjust for searching the whole brain, so a restricted search space imposes a less stringent significance threshold to report 

credible associations.  
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 SNP genotypes were coded additively as 0, 1, or 2 according to the number of minor alleles present in each 

subject. The significance levels (p-value) of individual and joint SNP associations with FA, Drad, Dmean,, and Dax were 

determined from the F-score of the partial F-test:  

    F =

(RSScovariates− RSSfull )
(pfull − pcovariates)

RSSfull

(n − pfull )

   Eq. 2  

Here, RSS represents the residual sum-of-squares. A reduced model includes only covariates (age, sex), and the full 

model contains all SNPs and covariates. p-maps were generated for each individual SNP, co-varying for each of the 17 

other SNPs.  

Candidate Gene Analysis 

 As a post hoc test, we assessed the effect of an individual SNP that contributed most to the multi-SNP results, 

examining its individual voxel-wise associations with measures of microstructural WM integrity on the thresholded 

whole brain scans of QTIM participants. This test was not restricted to the CHOL mask generated earlier.  

Multiple Comparisons Correction 

 Computing multiple comparisons across thousands of voxels can introduce a high false positive error rate (Nir et 

al., 2013). To account for these errors, we used the searchlight false discovery rate (FDR) method to control the false 

positive rate of each map at q = 0.05, which controls for regional effects over FDR in any reported findings (Jahanshad et 

al., 2012; Langers et al., 2007). All statistical maps shown in this paper were thresholded at their corrected p-value after 

performing searchlight FDR at q = 0.05 to show only regions of significance. Uncorrected p-values were then shown 

within the significant regions. When determining the significance of the effects of each individual SNP in the multi-SNP 

analysis (e.g., to identify our candidate SNP), we had to correct for each of the 18 SNPs included in the joint analysis. 

Follow-Up Analysis – ADNI Cohort 

 To follow-up these findings, we also tested if there were any detectable associations in older participants from the 

ADNI. Our study included 78 participants (49 men/29 women) with an average age of 74.3 ± 7.3 years. At the time of 

their baseline MRI scan, each subject underwent multiple cognitive evaluations – including the Mini-Mental State 

Examination (MMSE), Wechsler Memory Scale, Clinical Dementia Rating (CDR), and Alzheimer's Disease Assessment 
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Scale-Cognitive (ADAS-cog) - which were used to identify individuals as having Alzheimer’s disease (AD) or mild 

cognitive impairment (MCI), or they were classified as healthy controls (HC) (Nir et al., 2013). Definitive presence of 

AD pathology can only be confirmed via brain tissue biopsy or post-mortem examination, so these diagnoses are only 

probable. Subject information for each probable diagnosis group is summarized in Table 2. Participants were scanned at 

over 50 sites across North America. Inclusion and exclusion criteria are detailed in the ADNI protocol (www.adni-

info.org). All data from this cohort is publicly available at: http://www.loni.usc.edu/ADNI/.  

[Table 2] 

 The ADNI dataset was chosen for use as an exploratory follow-up sample to study the candidate gene’s 

associations with WM metrics in brain scans of older individuals, not because of the presence of AD and MCI diagnostic 

categories. As such, all probable diagnoses were included in the analysis to maximize our sample size, and probable 

disease status was co-varied for, as AD is known to associate with measures of WM (Bartzokis et al., 2003; Rose et al., 

2000; Parente et al., 2008). 

 ADNI was conducted according to Good Clinical Practice guidelines, the Declaration of Helsinki, US 21CFR 

Part 50— Protection of Human Subjects, and Part 56—Institutional Review Boards, and pursuant to state and federal 

HIPAA regulations. Written informed consent for the study was obtained from all participants and/or authorized 

representatives and study partners.  

Follow-Up Analysis – Statistical Analysis  

 In our analysis, we covaried for sex, age, and probable disease status (using a dummy covariate for each of the 

diagnoses AD and MCI) for our candidate SNP using the model listed in Eq. 2. Candidate SNP allele dosage did not 

vary significantly between each probable diagnosis, and the allele frequency of each group was in Hardy-Weinberg 

equilibrium.  APOE4 status is important to consider in elderly individuals when analyzing how cholesterol associated 

genes affect brain volume (Murphy et al., 2012). Thus, we ran additional analyses that co-varied for APOE4 status. As 

only 57 participants had APOE4 information, we re-ran our initial analysis in this smaller sub-sample, not co-varying for 

APOE4, to eliminate group size effects. Demographic and genotypic information for both cohorts is summarized in 

Table 3. 

[Table 3] 
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DTI Acquisition and Processing 

 Images were acquired and processed as previously described (Jahanshad et al., 2012; Nir et al., 2013). Briefly, 

the following steps were performed: images underwent distortion correction and intensive quality control; DTI metrics 

were extracted from the tensor; a study specific FA template was created to which we registered all individual FA maps; 

voxelwise associations were performed in regions of high FA in the template (FA > 0.25 for healthy young adults; FA > 

0.2 for older ADNI participants). Additional details on image acquisition and processing and can be found in the 

Supplementary Methods section. 

Explanation of DTI Measures 

A single diffusion tensor was fitted at each voxel in the brain from the eddy- and EPI-corrected DWI scans using 

FSL, and scalar anisotropy and diffusivity measures were obtained from the resulting diffusion tensor eigenvalues 

including fractional anisotropy (FA) and radial, mean, and axial diffusivity (Drad, Dmean, Dax).  

Generally, higher FA indicates the presence of more heavily myelinated axons and is a well-accepted index of 

microstructural white matter integrity (Beaulieu, 2002; Klingberg et al., 2000). FA will therefore be high (nearer to 1) in 

regions of high organization (e,g., the corpus callosum), intermediate in regions with some organization (i.e., white 

matter regions with no predominant fiber orientation), low in regions that are not specifically oriented (i.e., gray matter), 

and near zero in free fluids (i.e., cerebrospinal fluid) (Grieve et al., 2007).  

Lower FA can also indicate a reduction in the density of WM fibers, a loss in axonal bundle coherence, or a 

variation in membrane permeability to water (Beaulieu & Allen, 1994), so radial, mean, and axial diffusivity (Drad, Dmean, 

Dax) are also commonly included in WM assessments (Barysheva et al., 2013). Dax (λ1) represents the tendency of water 

to diffuse along its primary direction of diffusion. Drad (the average of λ2 and λ3) measures diffusion perpendicular to the 

axonal fibers. Drad is unaffected by the loss of bundle coherence and often increases when myelin is damaged or fails to 

develop normally (Song et al., 2002; Song et al., 2005; Thomason & Thompson, 2011). Dmean ( ) is the average of the 

diffusivities in the three principal diffusion directions. Thus, Dmean provides an overall evaluation of the molecular 

motion in a voxel or region, characterizing the overall presence of obstacles to diffusion (Thomason & Thompson, 

2011). The combined use of these diffusivity measures gives a clearer picture of WM microstructure.  

Results 

ˆ λ 
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Cholesterol Analysis  

 Serum cholesterol concentrations and DTI images were available for 403 individuals from the QTIM cohort (see 

Demographics, Table 3). We mapped the voxel-wise effects of averaged adolescent blood serum cholesterol measures 

(CHOL, HDL, and LDL-c; average collection age=15.2 years) across the thresholded WM regions of the whole brain to 

determine associations with white matter integrity. Higher CHOL was associated (survived FDR at q=0.05) with higher 

FA across broad regions of white matter, including the genu of the corpus callosum (G), corpus callosum overall (CC), 

fornix (FX), internal capsule (IC), and the inferior fronto-occipital fasciculus (IFOF) (Figure 2).  

[Figure 2] 

Furthermore, higher CHOL was associated with lower Drad, Dmean, and Dax (with negative beta-values) (Supplementary 

Figure 1). Higher HDL was associated with higher FA in the splenium of the corpus callosum (SP), the IC, arcuate 

fasciculus (AF), FX, CC, corona radiata (CR), and regions corresponding to the IFOF, inferior longitudinal fasciculus 

(ILF), and/or uncinate (UNC) (Figure 2). Higher HDL was associated with lower Drad (Supplementary Figure 2), but 

variation in HDL was not significantly associated with Dax and Dmean. LDL-c was not significantly associated with FA; 

thus, other measures of WM microstructure (Dax, Drad, and Dmean) were not further investigated.  

Multi-SNP Analysis  

 As adolescent CHOL levels were associated with WM structure in adulthood, we further examined common 

variants in a subset of cholesterol-related genes previously associated with AD risk (Table 1). Using a multi-SNP 

genetic model (Kohannim et al., 2012), we examined the joint effect of allele dosage of 18 SNPs on brain regions where 

CHOL was associated with FA. This avoided corrections across unnecessary tests at potentially unrelated voxels, or 

voxels with poor signal to noise ratio, and boosted detection sensitivity by limiting the search space.  

 Significant predictions were made by the joint multi-SNP model with FA (p=1.09x10-5, critical p-value of 0.023 

to pass FDR at q=0.05) in 46.7% of voxels of the CHOL FA mask in the IC, CC, and the IFOF and/or ILF (Figure 3).  

[Figure 3] 

The critical p-value is the highest threshold that controls the FDR, and higher critical p-values (closer to 0.05) denote 

stronger effects. The multi-SNP analysis shows the proportion of variance (R2) in FA explained by our SNP panel. We 

generated p-maps for the individual associations with FA for each SNP, simultaneously co-varying for the effects of the 
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other SNPs. rs5882 of CETP individually survived multiple comparisons correction across all voxels using FDR at 

q=0.05 individually (minimum voxelwise p-value = 6.54x10-7, critical p-value = 0.033). For the main multi-SNP 

analysis, only one statistical test is completed so no further correction is necessary for the number of SNPs– that is built 

into the analysis. For the individual SNP analyses, however, we corrected for both the number of voxels tested and the 

number of SNPs tested. Even so, rs5882 in CETP was statistically significant at the new more stringent significance 

threshold (p-value = 7.61x10-7).  

Candidate Gene Analyses 

 After identifying candidate gene CETP (rs5882) from the multi-SNP analysis, we performed individual voxel-

wise examinations of rs5882 G-allele dosage on thresholded FA, Dax, Dmean, and Drad maps of the entire brain (not 

restricted to the areas associated with CHOL). In the QTIM sample (young healthy adults), increased rs5882 risk (G) 

allele dosage was significantly associated with higher FA (minimum voxelwise p-value = 9.47x10-8, critical p-

value=0.019) bilaterally in the internal capsule (IC), splenium of the corpus callosum (SP), arcuate fasciculus (AF), and 

areas corresponding to the uncinate (UNC), inferior longitudinal fasciculus (ILF), and/or inferior fronto-occipital 

fasciculus (IFOF) (Figure 4a). Higher rs5882 risk allele dosage was also associated with lower Drad and Dmean 

(Supplementary Figure 3) 

[Figure 4] 

Follow-up analysis in the Alzheimer’s Disease Neuroimaging Initiative 

 As rs5882 showed broad associations in the white matter tracts of healthy young adults (QTIM; mean age 23.8, 

SD=2.4), we searched for effects of this SNP in late life by analyzing rs5882 allele-dosage dependent voxel-wise 

associations with measures of WM over the whole thresholded brain images in ADNI (mean age 74.3, SD=7.3). Risk (G) 

allele dosage of rs5882 was associated with lower FA (p=4.53x10-6, critical p-value=0.0019) in the IFG, CC (forceps 

major), SP, CR, and regions corresponding to the ILF, IFOF, UNC, and/or FX (Figure 4b). This pattern was 

directionally opposite of our QTIM findings, but agrees with prior reports that A-allele dosage associates with greater 

baseline thickness and less atrophy in elderly APOE4 non-carriers (Murphy et al., 2012). rs5882 risk allele dosage was 

also associated with higher Drad and Dmean (Supplementary Figure 4). CETP and APOE interact (Arias-Vasquez et al., 

2007; Murphy et al., 2012), so we also ran the analysis co-varying for APOE status. rs5882 risk allele dosage continued 
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to show negative associations with FA.  

 

Discussion 

 In this study, we set out to further our understanding of the relationship between cholesterol, genetics, and the 

brain in young and old individuals. We found significant associations between elevated total adolescent cholesterol 

(CHOL) and high-density lipoprotein (HDL) levels and higher fractional anisotropy (FA) measured from DTI images 

acquired during early adulthood (QTIM). Ensuing analyses with other diffusivity measures suggested that higher 

cholesterol levels are indeed associated with greater WM integrity. We also found that cholesterol genes were associated 

with FA in these young adults in regions with substantial overlap to serum cholesterol measures. One SNP, rs5882 of 

CETP, independently held significant associations with DTI metrics, showing differential effects in younger and older 

populations (ADNI).  

 Changes in MRI signal, as detected by fractional anisotropy, can be attributed to a number of physiological 

factors including edema, demyelination, and inflammation (Assaf & Pasternak, 2008; Thomason & Thompson, 2011). 

The different processes contributing to significant signal change can potentially be distinguished by investigating the 

different diffusivity maps generated in DTI studies (Assaf & Pasternak, 2008). We performed our analyses with multiple 

DTI-derived measures (fractional anisotropy and axial, radial, and mean diffusivities) to provide a clearer picture of the 

white matter microstructural differences identified. Some interpretations of these metrics have been verified in post-

mortem analyses and animal model studies, and Drad has shown specific utility for assessment of myelination (Song et 

al., 2005). For a full explanation of DTI-derived measures, see the Methods section.  

 In voxel based analyses, presence of gray matter, white matter, and cerebrospinal fluid within a single voxel will 

lead to partial voluming (Lee et al., 2009). This effect is amplified in scans acquired with larger slice thicknesses - or 

greater voxel size. By limiting our statistical tests to regions where the template showed an FA greater than 0.25 (0.2 for 

the older cohort), we attempted to limit our analyses to highly probable white matter voxels where partial voluming plays 

a minimal role. However, due to voxel sizes much larger than axonal bundles, partial voluming remains an inherent 

limitation in current DTI analyses. 
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 The bulk of cholesterol biosynthesis during brain maturation is produced for myelin development (Morell & 

Jurevics, 1996), and myelination continues well into adulthood. Only recently has imaging been used to examine 

associations between serum cholesterol levels and brain structure in vivo. To our knowledge, our paper is the first to 

examine such associations in young adults. Elevated CHOL and HDL measured during adolescence were associated with 

greater FA levels and, more specifically, lower Drad in young adults. Higher cholesterol levels in early life may be 

associated with more robust myelination and greater progression along the WM developmental trajectory, contributing to 

greater WM microstructural integrity. Due to the lack of measured cholesterol levels in the cohort of older adults 

(ADNI), cholesterol analyses were only performed on the QTIM dataset. 

 Serum cholesterol levels increase nearly linearly from adolescence through mid-life at a rate of 2.29 mg/dL (0.06 

mmol/L) (Keys et al., 1950). As all participants were healthy, little deviation from this trend is expected. Due to the 

linear relationship, durations between serum collection (average age 15.2 ± 2.3 years) and scan time will be almost 

exclusively correlated with age at the time of the scan (average age 23.8 ±2.0 years) and therefore is not modeled 

separately. 

 While statistically significant associations between CHOL/HDL and FA were detected in broad WM regions in 

the young adults, cholesterol may simply have a more generalized effect on WM throughout the brain. Associations 

between cholesterol levels and fractional anisotropy (FA) are conventionally shown for regions where the estimated 

effect size (EES) for a set of voxels exceeds that expected by chance (FDR thresholded at q = 0.05). Thus, any inference 

about where the association is detected does not imply that the effects are not present elsewhere in the brain (Jernigan et 

al., 2003). Lack of standardization in the brain’s arterial supply (Tatu et al., 1996), differences in age of maturation of 

different white matter regions (Tamnes et al., 2010), and other anatomical variability may, in part, contribute to the 

detectability of a statistical association in any brain region. 

 Cholesterol concentration is influenced by genetics, so we performed a voxel-wise joint multi-SNP analysis on 

brain regions significantly associated with CHOL in the young adults. Several AD risk genes overlap with those that may 

increase a person’s risk for high serum cholesterol (Arias-Vasquez et al., 2007; Rodriguez-Rodriguez et al., 2009; 

Solfrizzi et al., 2002; Wollmer et al., 2003). Alzheimer’s disease (AD) pathology is marked by a global cognitive decline 

(Moseley, 2002) and by alterations in various WM structures of the brain (Bartzokis et al., 2003; Bozzali et al., 2002; 
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Brun & Englund, 1986; Rose et al., 2000), with lower FA observed in AD patients versus healthy controls (Parente et al., 

2008; Rose et al., 2008; Takahashi et al., 2002). DTI metrics have even detected changes in the WM microstructure 

between healthy elderly and patients with mild cognitive impairment (MCI) (Bosch et al., 2012; Ukmar et al., 2008), 

indicating the utility of mapping the effects of risk-variants before the onset of disease. As thousands of SNPs are 

implicated in the cholesterol metabolizing pathway, we narrowed our search to a panel of 18 cholesterol related SNPs 

previously associated with Alzheimer’s disease risk, which have known neurological involvement. Significant 

associations were detected between this set of genes and FA, suggesting that variations in the cholesterol-metabolizing 

pathway influence WM microstructure. These genes may affect the local concentration of cholesterol available to 

oligodendrocytes, as CNS myelination is hindered when cholesterol synthesis is impaired in oligodendrocytes (Saher et 

al., 2005).  

 The multi-SNP analysis also identified the variant of the cholesterol-related genes with the largest influence on 

FA - CETP (rs5582). The role of CETP (cholesteryl ester transfer protein) in plasma has been extensively studied 

(Ruggeri, 2005), but its role in the brain is less well understood. CETP protein product is detectable in cerebrospinal 

fluid (Tall, 1993), suggesting that the gene influences the cholesterol concentration available to the brain. CETP 

mediates transfer of cholesteryl esters from HDL to LDL and other lipoproteins and promotes subsequent uptake by the 

cell (Inazu et al., 1990). CETP rs5882 (I405V) represents an A to G variation, which encodes valine in place of 

isoleucine. Risk (G) allele homozygotes show significantly lower CETP and higher HDL levels (Arias-Vasquez et al., 

2007; Asselbergs et al., 2012).  

 In young adults, the rs5882 risk-allele dosage, assessed additively, was broadly associated with higher FA: risk 

(G-allele) homozygotes had higher FA than A-allele homozygotes and heterozygotes. Significantly lower radial 

diffusivity and mean diffusivity were also observed with increasing risk-allele dosage. Thus, the rs5882 I405V variant 

may lead to greater myelination and axonal integrity during brain development. As higher cholesterol levels are essential 

for maturation, abundant or elevated HDL levels may serve a critical role in the development of heavily myelinated 

white matter fibers. Turley et al. (1996) suggest that LDL cholesterol plays little to no role in the sterol acquiring process 

of the developing brain, and, in our own analysis, LDL-c failed to show significant associations with DTI correlates of 

white matter microstructure in young adults. 
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 While elevated cholesterol levels may support brain development, higher cholesterol later in life may be 

detrimental to the brain. As well as increasing risk for degenerative brain disease (Refolo et al., 2000), 

hypercholesterolemia also contributes to higher risk for developing cerebrovascular disorders (Kaste & Koivisto, 1988), 

including dysfunction of the blood brain barrier (Kalayci et al., 2009). Prior studies have found negative associations 

between serum cholesterol measures and FA in older individuals (Cohen et al., 2011; Williams et al., 2013) (average age 

of participants = 58.3±1.2 and 68.0±9.4 years, respectively). As Cohen et al. analyzed the effects of “abnormal 

cholesterol” (high HDL, low LDL, and/or statin use), we cannot directly relate our findings to their results. Contrary to 

results from our younger cohort, Williams and colleagues reported that greater HDL was associated with lower FA in an 

older group. Although serum cholesterol information is not available for the older participants evaluated from ADNI, we 

found that rs5882 risk-allele dosage (associated with higher HDL (Asselbergs et al., 2012)) was associated with lower 

FA and higher Drad and Dmean, suggesting lower WM microstructural integrity. Higher Drad may be indicative of lower 

levels of myelination. 

 Some WM regions where FA associations with serum cholesterol levels were detected (genu of the corpus 

callosum, inferior longitudinal fasciculus) are among the earliest and most rapidly changing WM tracts (Lebel et al., 

2008), suggesting that WM microstructure in these areas may be more susceptible to cholesterol concentration present 

during this crucial developmental period. While many different models describe the underlying association between WM 

and AD (Bartzokis, 2011; Nir et al., 2013), WM atrophy is often attributed, in part, to Wallerian degeneration and may 

be secondary to gray matter loss (Bozzali et al., 2002). Axonal integrity of the splenium of the corpus callosum (SP), 

among other regions, is lower in AD patients (Chua et al., 2008). Associations between cholesterol-gene CETP risk-

allele dosage and WM were found in the SP of young, healthy adults, suggesting that there may be a genetic component 

influencing these changes long before the onset of disease or age-related degeneration. Validation of our findings and 

proof of differential effects across brain regions would require a more focused study of cholesterol throughout 

development or a longitudinal assessment of cognitive impairment, which are beyond the scope of this work. 

 In summary, while previous studies showed associations between serum cholesterol levels and brain structure in 

older adults, this study may be the first to suggest that higher cholesterol levels are associated with greater white matter 

microstructural integrity in young adults. Cholesterol-related genetic variants predicted FA in nearly half of these WM 
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regions associated with serum cholesterol. As serum cholesterol is essentially separated from brain cholesterol, these 

genes may also act in the brain to affect the local cholesterol microenvironment and, as a result, WM integrity. rs5882 

risk (G) allele dosage showed opposite directional associations in two groups of participants most likely due to age 

differences in the cohorts, predicting significantly higher WM integrity in young adults and lower WM integrity in old 

adults. Since this specific variant forms a gene product that promotes elevated HDL, high HDL may be beneficial during 

WM development and detrimental later in life. Additional cohorts are needed to provide further evidence that the 

association is not a false positive.  

 The relationship between cholesterol and the brain is important for understanding the healthy aging process and 

pathology. When cholesterol available to the brain is reduced during development, white matter maturation is 

significantly affected. Lower white matter integrity could lead to slower signaling and impaired cognitive function, 

specifically in tasks requiring rapid decision and movement times (Muldoon et al., 1997). Late-life hypercholesterolemia, 

by contrast, is associated with cognitive decline (Elias et al., 2005; Solomon et al., 2009) and higher risk for late-onset 

AD in several studies (Reid et al., 2007; Sparks, 1997). Optimal cholesterol levels in the brain change over the lifespan, 

so some cholesterol-related genetic variations may be beneficial to white matter microstructural integrity early in life and 

detrimental later. Future longitudinal research is required to further elucidate how the favorable range of cholesterol 

levels changes throughout life and how these changes affect the brain. Study of the detrimental affects of unfavorable 

cholesterol levels may help us understand genetic risk decades before disease onset and may even lead to the 

development of novel therapeutic targets. 
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Table 1.  Summary of SNPs included in our multi-SNP analysis. 
 

SNP Nearest Gene MAF 

Minor 

Allele 

rs102275 FADS1 0.483 C 

rs11206514 PCSK9 0.4093 C 

rs2000069 ABCA1 0.4863 T 

rs253 LPL 0.4959 T 

rs261341 LIPC 0.4597 A 

rs3846662 HMGCR 0.4158 G 

rs387976 PVRL2 0.4734 C 

rs405509 TOMM40 0.4927 T 

rs439401 APOE 0.3942 T 

rs4810479 PLTP 0.4226 C 

rs4970843 SORT1 0.4245 C 

rs5882 CETP 0.4478 G 

rs5930 LDLR 0.3494 A 

rs6602910 GAS6 0.4588 T 

rs7120118 NR1H3 0.4634 C 

rs7122944 PAFAH1B2 0.2289 G 

rs783149 LPA 0.3155 A 

rs838878 SCARB1 0.3397 A 
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Table 2. ADNI participants by probable diagnosis.  
 

  Probable Diagnosis 

  AD MCI HC Total 

Participants 10 48 20 78 

Men 6 31 12 49 

Women 4 17 8 29 

Average Age at Scan (yr)  72.3 ± 11.4  74.4 ± 7.1  75.0 ± 5.4 74.3 ± 7.3 
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Table 3. Participant demographic and genotypic information.  
 

  Database 

  QTIM ADNI 

Participants 403 78 

Men 146 49 

Women  257 29 

Average Age at Scan (yr) 23.8 ± 2.4 74.3 ± 7.3 

Total Cholesterol (mmol/L; mg/dL) 4.3 ± 0.7; 168 ± 28 NA 

Low‐Density Lipoproteins (mmol/L; mg/dL) 2.4 ± 0.6; 95 ± 24 NA 

High‐Density Lipoproteins (mmol/L; mg/dL) 1.4 ± 0.3; 54 ± 11 NA 

Average Age at Cholesterol Tests (yr) 15.2 ± 2.3 NA 

Number of Cholesterol Tests 2.2 ± 1.0 NA 

rs5882 A/A 181 38 

rs5882 A/G 185 32 

rs5882 G/G 37 8 

APOE4 Homozygotes NA 6 

APOE4 Heterozygotes NA 19 

APOE4 Non‐Carriers NA 32 
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Figure 1. Overview of the motivating factors for our study, including the current understanding of cholesterol’s 
relationship to the brain and hypotheses that our study aimed to test.  
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Figure 2. White matter (WM) regions where total cholesterol (CHOL) and high-density lipoprotein (HDL) were 
associated with significantly higher FA.  
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Figure 3. R2 values for significant associations of the multi-SNP analysis within brain regions associated with total 
cholesterol in the QTIM sample.  
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Figure 4. Significant associations between white matter microstructure (as measured here by thresholded whole brain 
voxel-wise FA) and CETP (rs5882) risk (G) allele dosage in (a) the QTIM sample and (b) ADNI. 
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Table and Figure Legends 

 

Table 1. SNPs included in the multi-SNP model. The gene (or the nearest gene when SNP is intergenic), minor allele 

frequency, and minor allele associated with cholesterol for each SNP. 

Table 2.  Average age (years at time of scan) and sex of ADNI participants, broken down by probable diagnosis.  

Table 3. Participant demographics for the QTIM and ADNI cohorts. For QTIM, we report mean total cholesterol 

(CHOL), high-density lipoproteins (HDL), and calculated low-density lipoproteins (LDL-c). Average serum cholesterol 

measures were within normal ranges for adolescents (CHOL <4.4 mmol/L (<170 mg/dL); HDL >0.9 mmol/L (>35 

mg/dL); LDL <2.8 mmol/L (<110 mg/dL)). In ADNI, APOE4 carrier status is included.  

Figure 1. Several known relationships (solid black arrows) motivated our study. Both serum cholesterol levels and brain 

structure are highly heritable. In our initial analysis, we tested whether serum cholesterol levels effected WM 

microstructure (?1). Brain and serum cholesterol pools are largely independent, so we hypothesized that certain genes 

might exhibit pleiotropic effects on both serum and brain cholesterol pools and, thus, brain integrity. As cholesterol 

genes maintain serum cholesterol levels and AD genes influence brain structure, we analyzed the effects of a subset of 

cholesterol genes implicated in AD pathology on WM microstructure (?2). 

Figure 2. Associations between white matter microstructure (FA) and total cholesterol (CHOL) and high-density 

lipoprotein (HDL) in the QTIM sample. Higher adolescent serum levels of both CHOL and HDL were associated with 

higher FA in early adulthood. For total cholesterol, light blue areas correspond to stronger beta-values (regression 

coefficients more positive); for high-density lipoprotein, yellow areas correspond to stronger beta-values (more positive). 

Even though both measures positively associate with FA, they are represented in different colors to capture the specific 

beta-value ranges for each test. CC=corpus callosum, CR=corona radiata, IC=internal capsule, G=genu, IFOF=inferior 

fronto-occipital fasciculus, UNC=uncinate, ILF=inferior longitudinal fasciculus, FX=fornix, AF=arcuate fasciculus, 

SP=splenium. Left in the image is right in the brain. 

Figure 3. Multi-SNP results: Associations between FA and SNPs linked with CHOL. R2 values are combined predictive 

value of our SNPs, white areas are areas with higher R2 values, as shown by the color bar. The blue underlay corresponds 

to the p-values of the CHOL analysis; these were used to define a search region for the multi-SNP analysis. Thus, blue 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 31

regions visible represent the only regions of the CHOL FA mask where the multi-SNP analysis did not find significant 

associations. Left in the image is right in the brain, coordinates are in MNI space. 

Figure 4. Association between whole brain voxel-wise FA and CETP (rs5882) risk allele dosage in the QTIM and ADNI 

samples. In QTIM (a), increased G-allele dosage was associated with higher FA in statistically significant regions. 

Yellow corresponds to stronger b-values (more positive). In ADNI (b), increased G-allele dosage was associated with 

lower FA in statistically significant regions. Pink corresponds to stronger beta-values (more negative). Only areas 

surviving FDR across the brain are shown. CR=corona radiata, CC=corpus callosum, IC=internal capsule, IFG=inferior 

frontal gyrus, G=genu, SP=splenium, AF=arcuate fasciculus, IFOF=inferior fronto-occipital fasciculus, UNC=uncinate, 

ILF=inferior longitudinal fasciculus, FX=fornix. Left in the image is right in the brain, coordinates are in MNI space. 
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Supplementary Methods 

 

Genotyping 

QTIM participants were genotyped on the Illumina Human610-Quad SNP chip according to the manufacturer’s 

protocols. Additionally, zygosity was established by genotyping nine independent DNA microsatellite polymorphisms 

(polymorphism information content > 0.7) using standard PCR methods. Results were crosschecked with blood group 

(ABO, MNS, and Rh) and phenotypic data (hair, skin, and eye color), giving an overall probability of correct zygosity 

assignment > 99.99%, and information was used to control for relatedness between participants.   

For our ADNI DTI group, DNA samples were genotyped using the Illumina OmniExpress genotyping array; note 

that this chip used for these participants differs from the Illumina Human 610-Quad BeadChip used for the QTIM cohort. 

As these genotyping chips do not contain the two SNPs needed to determine APOE genotype (rs429358 and rs7412), 

ADNI researchers collected separate blood samples for DNA analysis, and APOE genotyping was done via PCR 

amplification and HhaI restriction enzyme digestion (Potkin et al., 2009).  

Scan Acquisition 

 In the QTIM cohort, whole-brain anatomical and high angular resolution diffusion images (HARDI) were 

acquired using a 4T Bruker Medspec MRI Scanner. T1-weighted anatomical images were acquired in the coronal plane 

with an inversion recovery rapid gradient echo sequence. Acquisition parameters were: inversion/repetition/echo times 

(TI/TR/TE) = 700/1500/3.35ms; flip angle = 8 degrees; slice thickness = 0.9 mm; 256x256 acquisition matrix. To reduce 

eddy-current induced distortions, diffusion-weighted images were collected using single-shot echo planar imaging with a 

twice-refocused spin echo sequence. Acquisition parameters were optimized to provide the best signal-to-noise ratio to 

estimate diffusion tensors (Jones et al., 1999). Diffusion weighted imaging parameters were: TR/TE = 6,090/91.7 ms; 

field of view (FOV) = 23 cm; 128×128 acquisition matrix. Each 3D volume consisted of 5-mm thick axial slices with a 

0.5-mm gap and 1.8×1.8 mm2 in-plane resolution. 30 images were acquired per subject: 3 with no diffusion sensitization 

(i.e., T2-weighted b0 images) and 27 diffusion-weighted (DW) images (b=1146 s/mm2) with gradient directions evenly 

distributed on the hemisphere in q-space. Scan time was 3 min. 

 As part of the ADNI dataset, whole-brain anatomical and diffusion-weighted images were obtained using a GE 3 
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Tesla Scanner. Anatomical T1-weighted images were acquired in the sagittal plane with a spoiled gradient echo 

sequence. Acquisition parameters were: TI/TR/TE = 400/6.98/2.85 ms; flip angle = 11 degree; slice thickness = 1.2 mm; 

256x256 acquisition matrix. Diffusion weighted imaging parameters were: TR/TE = 9,050/minimum ms; FOV = 35 cm; 

128×128 acquisition matrix. Each 3D volume consisted of 2.7-mm thick axial slices with no gap, yielding an acquired 

2.7 mm isotropic spatial resolution. 46 separate images were acquired for each DTI scan: 5 T2 weighted b0 images and 

41 DW images (b=1000 s/mm2). ADNI scan protocol was chosen after we compared several DTI protocols, to optimize 

the signal-to-noise ratio in a fixed scan time (Jahanshad et al., 2010; Zhan et al., 2013). Scan time was 9 minutes. All T1-

weighted MR and DWI images were checked visually for quality assurance to exclude scans with excessive motion 

and/or artifacts; none was excluded for quality reasons.  

Image Processing 

 Non-brain regions of scans from both the QTIM and ADNI cohorts were were automatically removed from b0 

images from the data set using the FSL tool “BET” (FMRIB Software Library, http://fsl.fmrib.ox.ac.uk/fsl/). To correct 

for EPI distortion, the subject’s skull-stripped b0 images were averaged, linearly aligned to a common space (Holmes et 

al., 1998), and elastically registered to their respective T2-weighted scans by inverse consistent elastic registration with a 

mutual information cost function (Leow et al., 2005). The resulting 3D deformation fields were then applied to the 

remaining DWI volumes, and diffusion parameters were mapped. DW images with excessive motion and/or artifacts 

were excluded for quality reasons. Fractional anisotropy maps from QTIM were threshold at 0.25, as FA values lower 

that 0.25 may reflect non-white matter brain tissue in healthy participants. FA maps from ADNI were thresholded at 0.2 

to include the possible lower FA value WM present in the brains of diseased individuals. FA maps were registered to a 

minimal deformation target (MDT) and then smoothed with an isotropic Gaussian kernel (7 mm full width at half-

maximum) to normalize outlines of the major white matter structures to a high degree of matching, greatly reducing 

neuroanatomical variations across participants. Registrations from the FA-mappings were also applied to all diffusivity 

maps to ensure all images are aligned. Cohort specific registration information for QTIM and ADNI are described in 

Jahanshad et al. (2012) and Nir et al. (2013), respectively.  

Random Effects Model 

  Voxelwise FA = A+ βageAge+ βsexSex + βCHOLCHOL + α +ε   Supp Eq. 1  
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Here, ‘Voxelwise FA’ is the FA map for each subject, but in other tests we also used Drad, Dmean,, or Dax as the dependent 

variable predicted. ‘CHOL’ could be total cholesterol, HDL or LDL-c. A is the constant term, the βs are the covariate 

regression coefficients, ε is the error, and α is a coefficient that accounts for random effects, included to account for 

familial relatedness. 
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Supplementary Figure 1. Diagram of the analyses performed in our study, including a summary of the results. 
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Supplementary Figure 2. Significant negative voxel-wise associations between follow-up measures of white matter 
miscrostructure (Dax, Drad, and Dmean) and increased adolescent total cholesterol serum levels (CHOL) in the QTIM 
sample.  
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Supplementary Figure 3. Significant negative voxel-wise associations between follow-up measures of white matter 
miscrostructure (Drad) and increased adolescent high-density lipoprotein serum levels (HDL) in the QTIM sample. 
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Supplementary Figure 4. Significant negative voxel-wise associations between follow-up measures of white matter 
miscrostructure (Drad and Dmean) and CETP (rs5882) risk (G) allele dosage in the QTIM sample. 
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Supplementary Figure 5. Significant positive voxel-wise associations between follow-up measures of white matter 
microstructure (Drad and Dmean) and CETP (rs5882) risk (G) allele dosage in the ADNI sample. 
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Supplementary Figure Legends  

 

Supplementary Figure 1. Diagram summarizing analyses performed in our study. 1a shows the voxel-wise analyses of 

the effects of CHOL (total cholesterol), HDL (high-density lipoproteins), and LDL-c (calculated low-density 

lipoproteins) on white matter microstructure of the whole brain (WB), as measured by fractional anisotropy (FA). No 

significant associations were detected between LDL-c and FA, as represented by the X through the brain. Significant 

voxels from the CHOL FA analysis were then tested for pleiotropic effects with 18 cholesterol-associated genes (Table 

1), finding significant associations (1b). Of the 18 SNPs tested, rs5882 (CETP) was significantly associated with FA 

(p>6.54x10-7). This SNP was selected for individual voxel-wise follow-up analyses on thresholded whole brain (WB) FA 

maps in young adults (QTIM) and in old adults (ADNI) (1c) to determine their effects throughout life. rs5882 effects are 

mapped in different colors in ADNI and QTIM due to their different directional of association; negative and positive, 

respectively. Analyses of other WM measures (Dax (axial diffusivity), Drad (radial diffusivity), and Dmean (mean 

diffusivity)) were performed if significant associations were detected with FA (Supplementary Figures 2-5). 

Supplementary Figure 2. Associations between fractional anisotropy (FA) and total cholesterol (CHOL) were followed 

up by testing other measures of white matter microstructure (Dax, Drad, and Dmean) in the QTIM sample. Higher 

adolescent serum levels of CHOL were associated with lower Dax, Drad, and Dmean in early adulthood. Pink areas 

correspond to stronger beta-values (regression coefficients more negatvie). Left in image is right in brain.  

Supplementary Figure 3. Associations between fractional anisotropy (FA) and high-density lipoprotein (HDL) were 

followed up by testing other measures of white matter microstructure (Dax, Drad, and Dmean) in the QTIM sample. Higher 

adolescent serum levels of HDL was associated with lower Drad in early adulthood. Darker blue areas correspond to 

stronger beta-values (regression coefficients more negatvie). Adolescent serum HDL levels did not significantly 

associate with Dax and Dmean. Left in image is right in brain. 

Supplementary Figure 4. Associations between thresholded whole brain voxel-wise FA and CETP (rs5882) risk (G) 

allele dosage in the QTIM sample were followed up by testing other measures of white matter microstructure (Dax, Drad, 

and Dmean). Higher G-allele dosage was associated with lower Drad and Dmean in statistically significant regions. Pink 
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corresponds to stronger b-values (more negative); only areas surviving FDR across the brain are shown. rs5882 G-allele 

dosage did not significantly associate with Dax. Left in image is right in brain. 

Supplementary Figure 5. Associations between thresholded whole brain voxel-wise FA and CETP (rs5882) risk (G) 

allele dosage in the ADNI sample were followed up by testing other measures of white matter microstructure (Dax, Drad, 

and Dmean). Higher G-allele dosage was associated with higher Drad and Dmean in statistically significant regions. Yellow 

corresponds to stronger b-values (more positive); only areas surviving FDR across the brain are shown. rs5882 G-allele 

dosage did not significantly associate with Dax. Left in image is right in brain. 
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Highlights  
• We performed the first brain mapping study of serum cholesterol in young adults. 
• Higher cholesterol was significantly associated with higher white matter integrity. 
• Cholesterol genes jointly predicted WM integrity in cholesterol-associated 

regions. 
• CETP (rs5882) was significantly associated with higher WM integrity in young 

adults. 
• CETP WM associations were detected in the opposite direction in late-life. 




