11 research outputs found

    Rare and low-frequency coding variants alter human adult height

    Get PDF
    Height is a highly heritable, classic polygenic trait with ~700 common associated variants identified so far through genome - wide association studies . Here , we report 83 height - associated coding variants with lower minor allele frequenc ies ( range of 0.1 - 4.8% ) and effects of up to 2 16 cm /allele ( e.g. in IHH , STC2 , AR and CRISPLD2 ) , >10 times the average effect of common variants . In functional follow - up studies, rare height - increasing alleles of STC2 (+1 - 2 cm/allele) compromise d proteolytic inhibition of PAPP - A and increased cleavage of IGFBP - 4 in vitro , resulting in higher bioavailability of insulin - like growth factors . The se 83 height - associated variants overlap genes mutated in monogenic growth disorders and highlight new biological candidates ( e.g. ADAMTS3, IL11RA, NOX4 ) and pathways ( e.g . proteoglycan/ glycosaminoglycan synthesis ) involved in growth . Our results demonstrate that sufficiently large sample sizes can uncover rare and low - frequency variants of moderate to large effect associated with polygenic human phenotypes , and that these variants implicate relevant genes and pathways

    Simulering i sykepleierutdannelsen

    No full text
    Hensikt. Studiet belyser viktigheten av simulering med tanke på de ikke tekniske ferdighetene. Fokuset er rettet mot fem viktige temaer innen simulering; kommunikasjon, ikke-tekniske ferdigheter, tverrfaglig teamarbeid, pasientsikkerhet og refleksjon. Formålet var å se nytteeffekten av simulering i sykepleierutdannelsen og dens overføringsverdi til profesjon i kommende yrke. Metode. Litteraturstudie med kvalitativ metode. Det ble søkt i ulike databaser og åtte resultats artikler ble benyttet etter egne inklusjons- og eksklusjonskriterier. Artiklene ble analysert og vurdert etter gitte kriterier, samt kontrollert opp mot NSD (Norsk Senter for Forskningsdata). I tillegg benyttet vi teoretikere, relevant fagstoff og forskningspublikasjoner i studiet. Resultat. Benyttelse av simulering gir en positiv gevinst når det gjelder overgangen fra student til yrkesaktiv profesjon, men forskning kan ikke entydig dokumentere økt kunnskap i klinisk praksis. Kommunikasjon mellom profesjoner er essensielt i et tverrfaglig miljø, og bidrar til økt pasientsikkerhet. Bruk av kommunikasjonsverktøy, eksempelvis SBAR og læringsmetoder som Team STEPPS ved simulering viser forbedret tverrfaglig samarbeid, sikrere pasientbehandling og korrekt og målrettet kommunikasjon. Brifing og debrifing ved simulering i trygge tilrettelagte miljøer fremmer fagutvikling og økte kliniske evner, samt studentenes selvtillit. Tverrprofesjonell simulering bidrar blant annet til å redusere hierarkiet og gir en bedre innsikt i hverandres fagfelt. Konklusjon. Studien viser nytteverdi av simulering innen ikke-tekniske ferdigheter, som kommunikasjon, samarbeid og refleksjon, dette fremmer pasientsikkerhet. Det belyses også at studentene er avhengige av kompetente og oppdaterte veiledere, samt gode læringsmiljøer for å fremme god fagutvikling

    G.R.E.C.O. - XVIe siècle - France

    Get PDF
    G.R.E.C.O. - XVIe siècle - France. In: Bulletin de l'Association d'étude sur l'humanisme, la réforme et la renaissance, n°16, 1983. p. 117

    GWAS for autoimmune Addisons disease identifies multiple risk loci and highlights AIRE in disease susceptibility

    Get PDF
    Autoimmune Addisons disease (AAD) is characterized by the autoimmune destruction of the adrenal cortex. Low prevalence and complex inheritance have long hindered successful genetic studies. We here report the first genome-wide association study on AAD, which identifies nine independent risk loci (P&amp;lt;5x10(-8)). In addition to loci implicated in lymphocyte function and development shared with other autoimmune diseases such as HLA, BACH2, PTPN22 and CTLA4, we associate two protein-coding alterations in Autoimmune Regulator (AIRE) with AAD. The strongest, p.R471C (rs74203920, OR=3.4 (2.7-4.3), P=9.0x10(-25)) introduces an additional cysteine residue in the zinc-finger motif of the second PHD domain of the AIRE protein. This unbiased elucidation of the genetic contribution to development of AAD points to the importance of central immunological tolerance, and explains 35-41% of heritability (h(2)). Autoimmune Addisons disease is a rare complex disease, which has not yet been characterized by non-biased genetic studies. Here, the authors perform the first GWAS for the disease, identifying nine loci including two coding variants in the gene Autoimmune Regulator (AIRE).Funding Agencies|Swedish National Infrastructure for Computing (SNIC) through Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX) [sens2017513]; KG Jebsen Foundation; Research Council of NorwayResearch Council of Norway; Swedish Research CouncilSwedish Research CouncilEuropean Commission; Knut and Alice Wallenberg FoundationKnut &amp; Alice Wallenberg Foundation; Health Authorities of Western Norway; Torsten and Ragnar Soderberg Foundations; Novo Nordisk FoundationNovo Nordisk Foundation; Swedish Society for Medical Research</p

    GWAS for autoimmune Addison's disease identifies multiple risk loci and highlights AIRE in disease susceptibility

    No full text
    Autoimmune Addison’s disease (AAD) is characterized by the autoimmune destruction of the adrenal cortex. Low prevalence and complex inheritance have long hindered successful genetic studies. We here report the first genome-wide association study on AAD, which identifies nine independent risk loci (P < 5 × 10−8). In addition to loci implicated in lymphocyte function and development shared with other autoimmune diseases such as HLA, BACH2, PTPN22 and CTLA4, we associate two protein-coding alterations in Autoimmune Regulator (AIRE) with AAD. The strongest, p.R471C (rs74203920, OR = 3.4 (2.7–4.3), P = 9.0 × 10−25) introduces an additional cysteine residue in the zinc-finger motif of the second PHD domain of the AIRE protein. This unbiased elucidation of the genetic contribution to development of AAD points to the importance of central immunological tolerance, and explains 35–41% of heritability (h2)

    Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity

    No full text
    Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are ~10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed ~7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity

    Publisher Correction: Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity

    No full text
    In the HTML version of this article initially published, the author groups ‘CHD Exome+ Consortium’, ‘EPIC-CVD Consortium’, ‘ExomeBP Consortium’, ‘Global Lipids Genetic Consortium’, ‘GoT2D Genes Consortium’, ‘EPIC InterAct Consortium’, ‘INTERVAL Study’, ‘ReproGen Consortium’, ‘T2D-Genes Consortium’, ‘The MAGIC Investigators’ and ‘Understanding Society Scientific Group’ appeared at the end of the author list but should have appeared earlier in the list, after author Krina T. Zondervan. The errors have been corrected in the HTML version of the article

    Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity.

    Get PDF
    Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are ~10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed ~7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity

    Rare and low-frequency coding variants alter human adult height

    No full text
    Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height-increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of
    corecore