113 research outputs found

    Multiwavelength star formation indicators: Observations

    Get PDF
    We present a compilation of multiwavelength data on different star formation indicators for a sample of nearby star forming galaxies. Here we discuss the observations, reductions and measurements of ultraviolet images obtained with STIS, on board the Hubble Space Telescope, ground-based Halpha, and VLA 8.46 GHz radio images. These observations are complemented with infrared fluxes, as well as large aperture optical radio and ultraviolet data from the literature. This database will be used in a forthcoming paper to compare star formation rates at different wavebands. We also present spectral energy distributions (SEDs) for those galaxies with at least one far-infrared measurements from ISO, longward of 100 um. These SEDs are divided in two groups, those which are dominated by the far-infrared emission, and those where the contribution from the far-infrared and optical emission is comparable. These SEDs are useful tools to study the properties of high redshift galaxies.Comment: 39 pages, 17 jpeg figures, 1 eps figure, To appear in ApJS May 200

    Properties of Ly-alpha emitters around the radio galaxy MRC 0316-257

    Full text link
    Observations of the radio galaxy MRC 0316-257 at z=3.13 and the surrounding field are presented. Using narrow- and broad-band imaging obtained with the VLT, 77 candidate Ly-alpha emitters with a rest-frame equivalent width of > 15 A were selected in a ~7'x7' field around the radio galaxy. Spectroscopy of 40 candidate emitters resulted in the discovery of 33 emission line galaxies of which 31 are Ly-alpha emitters with redshifts similar to that of the radio galaxy, while the remaining two galaxies turned out to be [OII] emitters. The Ly-alpha profiles have widths (FWHM) in the range of 120-800 km/s, with a median of 260 km/s. Where the signal-to-noise was large enough, the Ly-alpha profiles were found to be asymmetric, with apparent absorption troughs blueward of the profile peaks, indicative of absorption along the line of sight of an HI mass of at least 2x10^2 - 5x10^4 M_sun. The properties of the Ly-alpha galaxies (faint, blue and small) are consistent with young star forming galaxies which are still nearly dust free. The volume density of Ly-alpha emitting galaxies in the field around MRC 0316-257 is a factor of 3.3+0.5-0.4 larger compared with the density of field Ly-alpha emitters at that redshift. The velocity distribution of the spectroscopically confirmed emitters has a FWHM of 1510 km/s, which is substantially smaller than the width of the narrow-band filter (FWHM ~ 3500 km/s). The peak of the velocity distribution is located within 200 km/s of the redshift of the radio galaxy. We conclude that the confirmed Ly-alpha emitters are members of a protocluster of galaxies at z~3.13. The size of the protocluster is larger than 3.3x3.3 Mpc^2. The mass of this structure is estimated to be > 3-6x10^14 M_sun and could be the progenitor of a cluster of galaxies similar to e.g. the Virgo cluster. (Abridged)Comment: 23 Pages, including 20 PostScript figures. Publiced in Astronomy & Astrophysics. v2: typo fixed and Journal reference adde

    Local Star formation triggered by SN shocks in magnetized diffuse neutral clouds

    Full text link
    In this work, considering the impact of a SNR with a neutral magnetized cloud we derived analytically a set of conditions which are favorable for driving gravitational instability in the cloud and thus star formation. We have built diagrams of the SNR radius, versus the cloud density, that constrain a domain in the parameter space where star formation is allowed. The diagrams are also tested with fully 3-D MHD simulations involving a SNR and a self-gravitating cloud and we find that the numerical analysis is consistent with the results predicted by the diagrams. While the inclusion of a homogeneous magnetic field approximately perpendicular to the impact velocity of the SNR with an intensity ~1 mu muG results only a small shrinking of the star formation triggering zone in the diagrams, a larger magnetic field (~10 mu muG) causes a significant shrinking, as expected. Applications of the diagrams to a few regions of our own galaxy have revealed that star formation in those sites could have been triggered by shock waves from SNRs. Finally, we have evaluated the effective star formation efficiency for this sort of interaction and found that it is smaller than the observed values in our own Galaxy (sfe ~0.01-0.3). This result is consistent with previous work in the literature and also suggests that the mechanism presently investigated, though very powerful to drive structure formation, supersonic turbulence and eventually, local star formation, does not seem to be sufficient to drive global star formation in normal star forming galaxies, not even when the magnetic field in the neutral clouds is neglected. (abridged)Comment: 19 pages, 13 figures, accepted for pubblication in MNRA

    Control of star formation by supersonic turbulence

    Full text link
    Understanding the formation of stars in galaxies is central to much of modern astrophysics. For several decades it has been thought that stellar birth is primarily controlled by the interplay between gravity and magnetostatic support, modulated by ambipolar diffusion. Recently, however, both observational and numerical work has begun to suggest that support by supersonic turbulence rather than magnetic fields controls star formation. In this review we outline a new theory of star formation relying on the control by turbulence. We demonstrate that although supersonic turbulence can provide global support, it nevertheless produces density enhancements that allow local collapse. Inefficient, isolated star formation is a hallmark of turbulent support, while efficient, clustered star formation occurs in its absence. The consequences of this theory are then explored for both local star formation and galactic scale star formation. (ABSTRACT ABBREVIATED)Comment: Invited review for "Reviews of Modern Physics", 87 pages including 28 figures, in pres

    Angular Momentum and the Formation of Stars and Black Holes

    Full text link
    The formation of compact objects like stars and black holes is strongly constrained by the requirement that nearly all of the initial angular momentum of the diffuse material from which they form must be removed or redistributed during the formation process. The mechanisms that may be involved and their implications are discussed for (1) low-mass stars, most of which probably form in binary or multiple systems; (2) massive stars, which typically form in clusters; and (3) supermassive black holes that form in galactic nuclei. It is suggested that in all cases, gravitational interactions with other stars or mass concentrations in a forming system play an important role in redistributing angular momentum and thereby enabling the formation of a compact object. If this is true, the formation of stars and black holes must be a more complex, dynamic, and chaotic process than in standard models. The gravitational interactions that redistribute angular momentum tend to couple the mass of a forming object to the mass of the system, and this may have important implications for mass ratios in binaries, the upper stellar IMF in clusters, and the masses of supermassive black holes in galaxies.Comment: Accepted by Reports on Progress in Physic

    On the Ly-alpha emission from gamma-ray burst host galaxies: evidence for low metallicities

    Get PDF
    We report on the results of a search for Ly-alpha emission from the host galaxy of the z=2.140 GRB 011211 and other galaxies in its surrounding field. We detect Ly-alpha emission from the host as well as from six other galaxies in the field. The restframe equivalent width of the Ly-alpha line from the GRB 011211 host is about 21 AA. This is the fifth detection of Ly-alpha emission out of five possible detections from GRB host galaxies, strongly indicating that GRB hosts, at least at high redshifts, are Ly-alpha emitters. This is intriguing as only about 25% of the Lyman-Break selected galaxies at similar redshifts have Ly-alpha emission lines with restframe equivalent width larger than 20 AA. Possible explanations are i) a preference for GRB progenitors to be metal-poor as expected in the collapsar model, ii) an optical afterglow selection bias against dusty hosts, and iii) a higher fraction of Ly-alpha emitters at the faint end of the luminosity function for high-z galaxies. Of these, the current evidence seems to favour i).Comment: 5 pages, 3 figures. Accepted for publication in A&A Letter

    Benchmarking Materials Property Prediction Methods: The Matbench Test Set and Automatminer Reference Algorithm

    Full text link
    We present a benchmark test suite and an automated machine learning procedure for evaluating supervised machine learning (ML) models for predicting properties of inorganic bulk materials. The test suite, Matbench, is a set of 13 ML tasks that range in size from 312 to 132k samples and contain data from 10 density functional theory-derived and experimental sources. Tasks include predicting optical, thermal, electronic, thermodynamic, tensile, and elastic properties given a materials composition and/or crystal structure. The reference algorithm, Automatminer, is a highly-extensible, fully-automated ML pipeline for predicting materials properties from materials primitives (such as composition and crystal structure) without user intervention or hyperparameter tuning. We test Automatminer on the Matbench test suite and compare its predictive power with state-of-the-art crystal graph neural networks and a traditional descriptor-based Random Forest model. We find Automatminer achieves the best performance on 8 of 13 tasks in the benchmark. We also show our test suite is capable of exposing predictive advantages of each algorithm - namely, that crystal graph methods appear to outperform traditional machine learning methods given ~10^4 or greater data points. The pre-processed, ready-to-use Matbench tasks and the Automatminer source code are open source and available online (http://hackingmaterials.lbl.gov/automatminer/). We encourage evaluating new materials ML algorithms on the MatBench benchmark and comparing them against the latest version of Automatminer.Comment: Main text, supplemental inf

    Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study

    Get PDF
    Background Dementia with Lewy bodies is the second most common form of dementia in elderly people but has been overshadowed in the research field, partly because of similarities between dementia with Lewy bodies, Parkinson’s disease, and Alzheimer’s disease. So far, to our knowledge, no large-scale genetic study of dementia with Lewy bodies has been done. To better understand the genetic basis of dementia with Lewy bodies, we have done a genome-wide association study with the aim of identifying genetic risk factors for this disorder. Methods In this two-stage genome-wide association study, we collected samples from white participants of European ancestry who had been diagnosed with dementia with Lewy bodies according to established clinical or pathological criteria. In the discovery stage (with the case cohort recruited from 22 centres in ten countries and the controls derived from two publicly available database of Genotypes and Phenotypes studies [phs000404.v1.p1 and phs000982.v1.p1] in the USA), we performed genotyping and exploited the recently established Haplotype Reference Consortium panel as the basis for imputation. Pathological samples were ascertained following autopsy in each individual brain bank, whereas clinical samples were collected by clinical teams after clinical examination. There was no specific timeframe for collection of samples. We did association analyses in all participants with dementia with Lewy bodies, and also in only participants with pathological diagnosis. In the replication stage, we performed genotyping of significant and suggestive results from the discovery stage. Lastly, we did a meta-analysis of both stages under a fixed-effects model and used logistic regression to test for association in each stage. Findings This study included 1743 patients with dementia with Lewy bodies (1324 with pathological diagnosis) and 4454 controls (1216 patients with dementia with Lewy bodies vs 3791 controls in the discovery stage; 527 vs 663 in the replication stage). Results confirm previously reported associations: APOE (rs429358; odds ratio [OR] 2·40, 95% CI 2·14–2·70; p=1·05 × 10–⁴⁸), SNCA (rs7681440; OR 0·73, 0·66–0·81; p=6·39 × 10–¹⁰), and GBA (rs35749011; OR 2·55, 1·88–3·46; p=1·78 × 10–⁹). They also provide some evidence for a novel candidate locus, namely CNTN1 (rs7314908; OR 1·51, 1·27–1·79; p=2·21 × 10–⁶); further replication will be important. Additionally, we estimate the heritable component of dementia with Lewy bodies to be about 36%. Interpretation Despite the small sample size for a genome-wide association study, and acknowledging the potential biases from ascertaining samples from multiple locations, we present the most comprehensive and well powered genetic study in dementia with Lewy bodies so far. These data show that common genetic variability has a role in the disease

    A comprehensive screening of copy number variability in dementia with Lewy bodies

    Get PDF
    The role of genetic variability in dementia with Lewy bodies (DLB) is now indisputable; however, data regarding copy number variation (CNV) in this disease has been lacking. Here, we used whole-genome genotyping of 1454 DLB cases and 1525 controls to assess copy number variability. We used 2 algorithms to confidently detect CNVs, performed a case-control association analysis, screened for candidate CNVs previously associated with DLB-related diseases, and performed a candidate gene approach to fully explore the data. We identified 5 CNV regions with a significant genome-wide association to DLB; 2 of these were only present in cases and absent from publicly available databases: one of the regions overlapped LAPTM4B, a known lysosomal protein, whereas the other overlapped the NME1 locus and SPAG9. We also identified DLB cases presenting rare CNVs in genes previously associated with DLB or related neurodegenerative diseases, such as SNCA, APP, and MAPT. To our knowledge, this is the first study reporting genome-wide CNVs in a large DLB cohort. These results provide preliminary evidence for the contribution of CNVs in DLB risk.info:eu-repo/semantics/publishedVersio

    A comprehensive screening of copy number variability in dementia with Lewy bodies

    Get PDF
    The role of genetic variability in dementia with Lewy bodies (DLB) is now indisputable; however, data regarding copy number variation (CNV) in this disease has been lacking. Here, we used whole-genome genotyping of 1454 DLB cases and 1525 controls to assess copy number variability. We used 2 algorithms to confidently detect CNVs, performed a case-control association analysis, screened for candidate CNVs previously associated with DLB-related diseases, and performed a candidate gene approach to fully explore the data. We identified 5 CNV regions with a significant genome-wide association to DLB; 2 of these were only present in cases and absent from publicly available databases: one of the regions overlapped LAPTM4B, a known lysosomal protein, whereas the other overlapped the NME1 locus and SPAG9. We also identified DLB cases presenting rare CNVs in genes previously associated with DLB or related neurodegenerative diseases, such as SNCA, APP, and MAPT. To our knowledge, this is the first study reporting genome-wide CNVs in a large DLB cohort. These results provide preliminary evidence for the contribution of CNVs in DLB risk. (C) 2019 Elsevier Inc. All rights reserved.Peer reviewe
    corecore