133 research outputs found

    Evidence for geometry-dependent universal fluctuations of the Kardar-Parisi-Zhang interfaces in liquid-crystal turbulence

    Full text link
    We provide a comprehensive report on scale-invariant fluctuations of growing interfaces in liquid-crystal turbulence, for which we recently found evidence that they belong to the Kardar-Parisi-Zhang (KPZ) universality class for 1+1 dimensions [Phys. Rev. Lett. 104, 230601 (2010); Sci. Rep. 1, 34 (2011)]. Here we investigate both circular and flat interfaces and report their statistics in detail. First we demonstrate that their fluctuations show not only the KPZ scaling exponents but beyond: they asymptotically share even the precise forms of the distribution function and the spatial correlation function in common with solvable models of the KPZ class, demonstrating also an intimate relation to random matrix theory. We then determine other statistical properties for which no exact theoretical predictions were made, in particular the temporal correlation function and the persistence probabilities. Experimental results on finite-time effects and extreme-value statistics are also presented. Throughout the paper, emphasis is put on how the universal statistical properties depend on the global geometry of the interfaces, i.e., whether the interfaces are circular or flat. We thereby corroborate the powerful yet geometry-dependent universality of the KPZ class, which governs growing interfaces driven out of equilibrium.Comment: 31 pages, 21 figures, 1 table; references updated (v2,v3); Fig.19 updated & minor changes in text (v3); final version (v4); J. Stat. Phys. Online First (2012

    Avalanche Dynamics in Evolution, Growth, and Depinning Models

    Full text link
    The dynamics of complex systems in nature often occurs in terms of punctuations, or avalanches, rather than following a smooth, gradual path. A comprehensive theory of avalanche dynamics in models of growth, interface depinning, and evolution is presented. Specifically, we include the Bak-Sneppen evolution model, the Sneppen interface depinning model, the Zaitsev flux creep model, invasion percolation, and several other depinning models into a unified treatment encompassing a large class of far from equilibrium processes. The formation of fractal structures, the appearance of 1/f1/f noise, diffusion with anomalous Hurst exponents, Levy flights, and punctuated equilibria can all be related to the same underlying avalanche dynamics. This dynamics can be represented as a fractal in dd spatial plus one temporal dimension. We develop a scaling theory that relates many of the critical exponents in this broad category of extremal models, representing different universality classes, to two basic exponents characterizing the fractal attractor. The exact equations and the derived set of scaling relations are consistent with numerical simulations of the above mentioned models.Comment: 27 pages in revtex, no figures included. Figures or hard copy of the manuscript supplied on reques

    Effects of shoe sole geometry on toe clearance and walking stability in older adults

    Get PDF
    Thirty-five percent of people above age 65 fall each year, and half of their falls are associated with tripping: tripping, an apparently ‘mundane’ everyday problem, therefore significantly impacts on older people's health and associated medical costs. To avoid tripping and subsequent falling, sufficient toe clearance during the swing phase is crucial. We previously found that a rocker-shaped shoe sole enhances toe clearance in young adults, thereby decreasing their trip-risk. This study investigates whether such sole design also enhances older adults’ toe clearance, without inadvertently affecting their walking stability. Toe clearance and its variability are reported together with measures of walking stability for twelve older adults, walking in shoes with rocker angles of 10°, 15°, and 20° degrees. Surface inclinations (flat, incline, decline) were chosen to reflect a potential real-world environment. Toe clearance increased substantially from the 10° to the 15° degree rocker angle (p = 0.003) without compromising measures of walking stability (p > 0.05). A further increase in rocker angle to 20° degrees resulted in less substantial enhancement of toe clearance and came at the cost of a decrease in gait speed on the decline. The novelty of this investigation lies in the exploration of the trade-off between reduction of trip- risk through footwear design and adverse effects on walking stability on real-life relevant surfaces. A large amount of slip-resistant footwear is already available; our two studies highlight that footwear may also be designed to reduce trip-risk

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society
    corecore