440 research outputs found

    Changes in reproductive investment with altitude in an alpine plant

    Get PDF
    Aims In perennial species, the allocation of resources to reproduction results in a reduction of allocation to vegetative growth and, therefore, impacts future reproductive success. As a consequence, variation in this trade-off is among the most important driving forces in the life-history evolution of perennial plants and can lead to locally adapted genotypes. In addition to genetic variation, phenotypic plasticity might also contribute to local adaptation of plants to local conditions by mediating changes in reproductive allocation. Knowledge on the importance of genetic and environmental effects on the trade-off between reproduction and vegetative growth is therefore essential to understand how plants may respond to environmental changes. Methods We conducted a transplant experiment along an altitudinal gradient from 425 m to 1921 m in the front range of the Western Alps of Switzerland to assess the influence of both altitudinal origin of populations and altitude of growing site on growth, reproductive allocation and local adaptation in Poa alpina. The proportion of the number of reproductive tillers by the total number of tillers - was used as a proxy for reproductive allocation. Important findings In our study, the investment in reproduction increased with plant size. Plant growth and the relative importance of reproductive investment decreased in populations originating from higher altitudes compared to populations originating from lower altitudes. The changes in reproductive investment were mainly explained by differences in plant size. In contrast to genetic effects, phenotypic plasticity of all traits measured was low and not related to altitude. As a result, the population from the lowest altitude of origin performed best at all sites. Our results indicate that in P. alpina genetic differences in growth and reproductive investment are related to local conditions affecting growth, i.e. interspecific competition and soil moisture content

    Effects of seed predators of different body size on seed mortality in Bornean logged gorest

    Get PDF
    Background The Janzen-Connell hypothesis proposes that seed and seedling enemies play a major role in maintaining high levels of tree diversity in tropical forests. However, human disturbance may alter guilds of seed predators including their body size distribution. These changes have the potential to affect seedling survival in logged forest and may alter forest composition and diversity. Methodology/Principal Findings We manipulated seed density in plots beneath con- and heterospecific adult trees within a logged forest and excluded vertebrate predators of different body sizes using cages. We show that small and large-bodied predators differed in their effect on con- and heterospecific seedling mortality. In combination small and large-bodied predators dramatically decreased both con- and heterospecific seedling survival. In contrast, when larger-bodied predators were excluded small-bodied predators reduced conspecific seed survival leaving seeds coming from the distant tree of a different species. Conclusions/Significance Our results suggest that seed survival is affected differently by vertebrate predators according to their body size. Therefore, changes in the body size structure of the seed predator community in logged forests may change patterns of seed mortality and potentially affect recruitment and community composition

    Hypoxia and fatigue impair rapid torque development of knee extensors in elite alpine skiers

    Get PDF
    This study examined the effects of acute hypoxia on maximal and explosive torque and fatigability in knee extensors of skiers. Twenty-two elite male alpine skiers performed 35 maximal, repeated isokinetic knee extensions at 180∘s-1 (total exercise duration 61.25 s) in normoxia (NOR, FiO2 0.21) and normobaric hypoxia (HYP, FiO2 0.13) in a randomized, single-blind design. Peak torque and rate of torque development (RTD) from 0 to 100 ms and associated Vastus Lateralis peak EMG activity and rate of EMG rise (RER) were determined for each contraction. Relative changes in deoxyhemoglobin concentration of the VL muscle were monitored by near-infrared spectroscopy. Peak torque and peak EMG activity did not differ between conditions and decreased similarly with fatigue (p < 0.001), with peak torque decreasing continuously but EMG activity decreasing significantly after 30 contractions only. Compared to NOR, RTD, and RER values were lower in HYP during the first 12 and 9 contractions, respectively (both p < 0.05). Deoxyhemoglobin concentration during the last five contractions was higher in HYP than NOR (p = 0.050) but the delta between maximal and minimal deoxyhemoglobin for each contraction was similar in HYP and NOR suggesting a similar muscle O2 utilization. Post-exercise heart rate (138 ± 24 bpm) and blood lactate concentration (5.8 ± 3.1 mmol.l-1) did not differ between conditions. Arterial oxygen saturation was significantly lower (84 ± 4 vs. 98 ± 1%, p < 0.001) and ratings of perceived exertion higher (6 ± 1 vs. 5 ± 1, p < 0.001) in HYP than NOR. In summary, hypoxia limits RTD via a decrease in neural drive in elite alpine skiers undertaking maximal repeated isokinetic knee extensions, but the effect of hypoxic exposure is negated as fatigue develops. Isokinetic testing protocols for elite alpine skiers should incorporate RTD and RER measurements as they display a higher sensitivity than peak torque and EMG activity

    The thermodynamic scale of inorganic crystalline metastability

    Get PDF
    The space of metastable materials offers promising new design opportunities for next-generation technological materials, such as complex oxides, semiconductors, pharmaceuticals, steels, and beyond. Although metastable phases are ubiquitous in both nature and technology, only a heuristic understanding of their underlying thermodynamics exists. We report a large-scale data-mining study of the Materials Project, a high-throughput database of density functional theory–calculated energetics of Inorganic Crystal Structure Database structures, to explicitly quantify the thermodynamic scale of metastability for 29,902 observed inorganic crystalline phases. We reveal the influence of chemistry and composition on the accessible thermodynamic range of crystalline metastability for polymorphic and phase-separating compounds, yielding new physical insights that can guide the design of novel metastable materials. We further assert that not all low-energy metastable compounds can necessarily be synthesized, and propose a principle of ‘remnant metastability’—that observable metastable crystalline phases are generally remnants of thermodynamic conditions where they were once the lowest free-energy phase.United States. Dept. of Energy. Office of Basic Energy Sciences (DE-AC02-05CH11231)United States. Dept. of Energy. Office of Basic Energy Sciences (contract UGA-0-41029-16/ER392000

    Proposal for a 6-step approach for differential diagnosis of neonatal erythroderma

    Get PDF
    The broad differential diagnosis of neonatal erythroderma often poses a diagnostic challenge. Mortality of neonatal erythroderma is high due to complications of the erythroderma itself and the occasionally severe and life-threatening underlying disease. Early correct recognition of the underlying cause leads to better treatment and prognosis. Currently, neonatal erythroderma is approached on a case-by-case basis. The purpose of this scoping review was to develop a diagnostic approach in neonatal erythroderma. After a systematic literature search in Embase (January 1990 - May 2020, 74 cases of neonatal erythroderma were identified, and 50+ diagnoses could be extracted. Main causes were the ichthyoses (40%) and primary immunodeficiencies (35%). Congenital erythroderma was present in 64% (47/74) of the cases, predominantly with congenital ichthyosis (11/11; 100%), Netherton syndrome (12/14, 86%) and Omenn syndrome (11/23, 48%). Time until diagnosis ranged from 102 days to 116 days for cases of non-congenital erythroderma and congenital erythroderma respectively. Among the 74 identified cases a total of 17 patients (23%) died within a mean of 158 days and were related to Omenn syndrome (35%), graft-versus-host disease (67%) and Netherton syndrome (18%). Disease history and physical examination are summarized in this paper. Age of onset and a collodion membrane can help to narrow the differential diagnoses. Investigations of blood, histology, hair analysis, genetic analysis and clinical imaging are summarized and discussed. A standard blood investigation is proposed, and the need for skin biopsies with lympho-epithelial Kazal-type related Inhibitor staining is highlighted. Overall, this review shows that diagnostic procedures narrow the differential diagnosis in neonatal erythroderma. A 6-step flowchart for the diagnostic approach for neonatal erythroderma during the first month of life is proposed. The approach was made with the support of expert leaders from international multidisciplinary collaborations in the European Reference Network Skin-subthematic group Ichthyosis.Peer reviewe

    A highthroughput infrastructure for density functional theory calculations

    Get PDF
    a b s t r a c t The use of high-throughput density functional theory (DFT) calculations to screen for new materials and conduct fundamental research presents an exciting opportunity for materials science and materials innovation. High-throughput DFT typically involves computations on hundreds, thousands, or tens of thousands of compounds, and such a change of scale requires new calculation and data management methodologies. In this article, we describe aspects of the necessary data infrastructure for such projects to handle data generation and data analysis in a scalable way. We discuss the problem of accurately computing properties of compounds across diverse chemical spaces with a single exchange correlation functional, and demonstrate that errors in the generalized gradient approximation are highly dependent on chemical environment

    Conservation of birds in fragmented landscapes requires protected areas

    Get PDF
    For successful conservation of biodiversity, it is vital to know whether protected areas in increasingly fragmented landscapes effectively safeguard species. However, how large habitat fragments must be, and what level of protection is required to sustain species, remains poorly known. We compiled a global dataset on almost 2000 bird species in 741 forest fragments varying in size and protection status, and show that protection is associated with higher bird occurrence, especially for threatened species. Protection becomes increasingly effective with increasing size of forest fragments. For forest fragments >50 ha our results show that strict protection (International Union for Conservation of Nature [IUCN] categories I–IV) is strongly associated with higher bird occurrence, whereas fragments had to be at least 175 ha for moderate protection (IUCN categories V and VI) to have a positive effect. This meta-analysis quantifies the importance of fragment size, protection status, and their interaction for the conservation of bird species communities, and stresses that protection should not be limited to large pristine areas

    Biodiversity increases the resistance of ecosystem productivity to climate extremes

    Get PDF
    It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide1. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities2. However, subsequent experimental tests produced mixed results3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16–32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability14, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events

    Soil net nitrogen mineralisation across global grasslands

    Get PDF
    Soil nitrogen mineralisation (N-min), the conversion of organic into inorganic N, is important for productivity and nutrient cycling. The balance between mineralisation and immobilisation (net N-min) varies with soil properties and climate. However, because most global-scale assessments of net N-min are laboratory-based, its regulation under field-conditions and implications for real-world soil functioning remain uncertain. Here, we explore the drivers of realised (field) and potential (laboratory) soil net N-min across 30 grasslands worldwide. We find that realised N-min is largely explained by temperature of the wettest quarter, microbial biomass, clay content and bulk density. Potential N-min only weakly correlates with realised N-min, but contributes to explain realised net N-min when combined with soil and climatic variables. We provide novel insights of global realised soil net N-min and show that potential soil net N-min data available in the literature could be parameterised with soil and climate data to better predict realised N-min
    corecore