104 research outputs found

    Extensive genetic diversity and rapid population differentiation during blooms of Alexandrium fundyense (Dinophyceae) in an isolated salt pond on Cape Cod, MA, USA

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecology and Evolution 2 (2012): 2588–2599, doi:10.1002/ece3.373.In Massachusetts, paralytic shellfish poisoning (PSP) is annually recurrent along the coastline, including within several small embayments on Cape Cod. One such system, the Nauset Marsh System (NMS), supports extensive marshes and a thriving shellfishing industry. Over the last decade, PSP in the NMS has grown significantly worse; however, the origins and dynamics of the toxic Alexandrium fundyense (Balech) populations that bloom within the NMS are not well known. This study examined a collection of 412 strains isolated from the NMS and the Gulf of Maine (GOM) in 2006–2007 to investigate the genetic characteristics of localized blooms and assess connectivity with coastal populations. Comparisons of genetic differentiation showed that A. fundyense blooms in the NMS exhibited extensive clonal diversity and were genetically distinct from populations in the GOM. In both project years, genetic differentiation was observed among temporal samples collected from the NMS, sometimes occurring on the order of approximately 7 days. The underlying reasons for temporal differentiation are unknown, but may be due, in part, to life-cycle characteristics unique to the populations in shallow embayments, or possibly driven by selection from parasitism and zooplankton grazing; these results highlight the need to investigate the role of selective forces in the genetic dynamics of bloom populations. The small geographic scale and limited connectivity of NMS salt ponds provide a novel system for investigating regulators of blooms, as well as the influence of selective forces on population structure, all of which are otherwise difficult or impossible to study in the adjacent open-coastal waters or within larger estuaries.This study was funded through the Woods Hole Center for Oceans and Human Health, National Science Foundation OCE-0430724 and National Institutes of Health 1 P50 ES012742-01, and National Science Foundation OCE-0911031. Funding was also provided by NOAA Grant NA06NOS4780245

    The influence of anthropogenic nitrogen loading and meteorological conditions on the dynamics and toxicity of Alexandrium fundyense blooms in a New York (USA) estuary

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Harmful Algae 9 (2010): 402-412, doi:10.1016/j.hal.2010.02.003.The goal of this two-year study was to explore the role of nutrients and climatic conditions in promoting reoccurring Alexandrium fundyense blooms in the Northport-Huntington Bay complex, NY, USA. A bloom in 2007 was short and small (3 weeks, 103 cells L-1 maximal density) compared to 2008 when the A. fundyense bloom, which persisted for six weeks, achieved cell densities >106 cells L-1 and water column saxitoxin concentrations >2.4 x 104 pmol STX eq. L-1. During the 2008 bloom, both deployed mussels (used as indicator species) and wild soft shell clams became highly toxic (1,400 and 600μg STX eq./100g shellfish tissue, respectively) resulting in the closure of shellfish beds. The densities of benthic A. fundyense cysts at the onset of this bloom were four orders of magnitude lower than levels needed to account for observed cell densities, indicating in situ growth of vegetative cells was responsible for elevated bloom densities. Experimental enrichment of bloom water with nitrogenous compounds, particularly ammonium, significantly increased A. fundyense densities and particulate saxitoxin concentrations relative to unamended control treatments. The δ15N signatures (12 to 23‰) of particulate organic matter (POM) during blooms were similar to those of sewage (10 to 30‰) and both toxin and A. fundyense densities were significantly correlated with POM δ15N (p < 0.001). These findings suggest A. fundyense growth was supported by a source of wastewater such as the sewage treatment plant which discharges into Northport Harbor. Warmer than average atmospheric temperatures in the late winter and spring of 2008 and a cooler May contributed to an extended period of water column temperatures optimal for A. fundyense growth (12 – 20ºC), and thus may have also contributed toward the larger and longer bloom in 2008. Together this evidence suggests sewage-derived N loading and above average spring temperatures can promote intense and toxic A. fundyense blooms in estuaries.This work was supported by a grant from EPA’s Long Island Sound Study, New York Sea Grant, and the New York State Department of Environmental Conservation (to CJG) and from the NOAA Sea Grant Program (Grant No. NA06OAR4170021 (R/B-177)) to DMA

    Georges Bank : a leaky incubator of Alexandrium fundyense blooms

    Get PDF
    Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 103 (2014): 163-173, doi:10.1016/j.dsr2.2012.11.002.A series of oceanographic surveys on Georges Bank document variability of populations of the toxic dinoflagellate Alexandrium fundyense on time scales ranging from synoptic to seasonal to interannual. Blooms of A. fundyense on Georges Bank can reach concentrations on the order of 104 cells l-1, and are generally bank-wide in extent. Georges Bank populations of A. fundyense appear to be quasi-independent of those in the adjacent coastal Gulf of Maine, insofar as they occupy a hydrographic niche that is colder and saltier than their coastal counterparts. In contrast to coastal populations that rely on abundant resting cysts for bloom initiation, very few cysts are present in the sediments on Georges Bank. Bloom dynamics must therefore be largely controlled by the balance between growth and mortality processes, which are at present largely unknown for this population. Based on correlations between cell abundance and nutrient distributions, ammonium appears to be an important source of nitrogen for A. fundyense blooms on Georges Bank.We appreciate financial support of the National Oceanic Atmospheric Administration (grant NA06NOS4780245 for the Gulf of Maine Toxicity (GOMTOX) program) and the Woods Hole Center for Oceans and Human Health through National Science Foundation grants OCE-0430724 and OCE-0911031 and National Institute of Environmental Health Sciences grant 1P50-ES01274201

    Dynamics of Alexandrium fundyense blooms and shellfish toxicity in the Nauset Marsh System of Cape Cod (Massachusetts, USA)

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Harmful Algae 12 (2011): 26–38, doi:10.1016/j.hal.2011.08.009.Paralytic Shellfish Poisoning (PSP) toxins are annually recurrent along the Massachusetts coastline (USA), which includes many small embayments and salt ponds. Among these is the Nauset Marsh System (NMS), which has a long history of PSP toxicity. Little is known, however, about the bloom dynamics of the causative organism Alexandrium fundyense within that economically and socially important system. The overall goal of this work was to characterize the distribution and dynamics of A. fundyense blooms within the NMS and adjacent coastal waters by documenting the distribution and abundance of resting cysts and vegetative cells. Cysts were found predominantly in three drowned kettle holes or salt ponds at the distal ends of the NMS - Salt Pond, Mill Pond, and Town Cove. The central region of the NMS had a much lower concentration of cysts. Two types of A. fundyense blooms were observed. One originated entirely within the estuary, seeded by cysts in the three seedbeds. These blooms developed independently of each other and of the A. fundyense population observed in adjacent coastal waters outside the NMS. The temporal development of the blooms was different in the three salt ponds, with initiation differing by as much as 30 days. These differences do not appear to reflect the initial cyst abundances in these locations, and may simply result from higher cell retention and higher nutrient concentrations in Mill Pond, the first site to bloom. Germination of cysts accounted for a small percentage of the peak cell densities in the ponds, so population size was influenced more by the factors affecting growth than by cyst abundance. Subsurface cell aggregation (surface avoidance) limited advection of the vegetative A. fundyense cells out of the salt ponds through the shallow inlet channels. Thus, the upper reaches of the NMS are at the greatest risk for PSP since the highest cyst abundances and cell concentrations were found there. After these localized blooms in the salt ponds peaked and declined, a second, late season bloom occurred within the central portions of the NMS. The timing of this second bloom relative to those within the salt ponds and the coastal circulation patterns at that time strongly suggest that those cells originated from a regional A. fundyense bloom in the Gulf of Maine, delivered to the central marsh from coastal waters outside the NMS through Nauset Inlet. These results will guide policy decisions about water quality as well as shellfish monitoring and utilization within the NMS and highlight the potential for “surgical” closures of shellfish during PSP events, leaving some areas open for harvesting while others are closed.This work was supported by NOAA Grant NA06OAR4170021, NPS Grant H238015504 and by the Woods Hole Center for Oceans and Human Health through NSF Grants OCE-0911031 and OCE-0430724 and NIEHS Grant 1P50-ES01274201. B.G.C. was supported by a Xunta de Galicia Ángeles Alvariño fellowship and the Stanley W. Watson Chair for Excellence in Oceanography under a Postdoctoral program at the Woods Hole Oceanographic Institution

    Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences 108 (2011): 4352-4357, doi:10.1073/pnas.1016106108.Harmful algal blooms (HABs) cause significant economic and ecological damage worldwide. Despite considerable efforts, a comprehensive understanding of the factors that promote these blooms has been lacking because the biochemical pathways that facilitate their dominance relative to other phytoplankton within specific environments have not been identified. Here, biogeochemical measurements demonstrated that the harmful 43 Aureococcus anophagefferens outcompeted co-occurring phytoplankton in estuaries with elevated levels of dissolved organic matter and turbidity and low levels of dissolved inorganic nitrogen. We subsequently sequenced the first HAB genome (A. anophagefferens) and compared its gene complement to those of six competing phytoplankton species identified via metaproteomics. Using an ecogenomic approach, we specifically focused on the gene sets that may facilitate dominance within the environmental conditions present during blooms. A. anophagefferens possesses a larger genome (56 mbp) and more genes involved in light harvesting, organic carbon and nitrogen utilization, and encoding selenium- and metal-requiring enzymes than competing phytoplankton. Genes for the synthesis of microbial deterrents likely permit the proliferation of this species with reduced mortality losses during blooms. Collectively, these findings suggest that anthropogenic activities resulting in elevated levels of turbidity, organic matter, and metals have opened a niche within coastal ecosystems that ideally suits the unique genetic capacity of A. anophagefferens and thus has facilitated the proliferation of this and potentially other HABs.Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Efforts were also supported by awards from New York Sea Grant to Stony Brook University, National Oceanic and Atmospheric Administration Center for Sponsored Coastal Ocean Research award #NA09NOS4780206 to Woods Hole Oceanographic Institution, NIH grant GM061603 to Harvard University, and NSF award IOS-0841918 to The University of Tennessee

    Future HAB science: Directions and challenges in a changing climate

    Get PDF
    There is increasing concern that accelerating environmental change attributed to human-induced warming of the planet may substantially alter the patterns, distribution and intensity of Harmful Algal Blooms (HABs). Changes in temperature, ocean acidification, precipitation, nutrient stress or availability, and the physical structure of the water column all influence the productivity, composition, and global range of phytoplankton assemblages, but large uncertainty remains about how integration of these climate drivers might shape future HABs. Presented here are the collective deliberations from a symposium on HABs and climate change where the research challenges to understanding potential linkages between HABs and climate were considered, along with new research directions to better define these linkages. In addition to the likely effects of physical (temperature, salinity, stratification, light, changing storm intensity), chemical (nutrients, ocean acidification), and biological (grazer) drivers on microalgae (senso lato), symposium participants explored more broadly the subjects of cyanobacterial HABs, benthic HABs, HAB effects on fisheries, HAB modelling challenges, and the contributions that molecular approaches can bring to HAB studies. There was consensus that alongside traditional research, HAB scientists must set new courses of research and practices to deliver the conceptual and quantitative advances required to forecast future HAB trends. These different practices encompass laboratory and field studies, long-term observational programs, retrospectives, as well as the study of socioeconomic drivers and linkages with aquaculture and fisheries. In anticipation of growing HAB problems, research on potential mitigation strategies should be a priority. It is recommended that a substantial portion of HAB research among laboratories be directed collectively at a small sub-set of HAB species and questions in order to fast-track advances in our understanding. Climate-driven changes in coastal oceanographic and ecological systems are becoming substantial, in some cases exacerbated by localized human activities. That, combined with the slow pace of decreasing global carbon emissions, signals the urgency for HAB scientists to accelerate efforts across disciplines to provide society with the necessary insights regarding future HAB trends

    Prokaryotic and eukaryotic microbiomes associated with blooms of the ichthyotoxic dinoflagellate Cochlodinium (Margalefidinium) polykrikoides in New York, USA, estuaries.

    No full text
    While harmful algal blooms caused by the ichthyotoxic dinoflagellate, Cochlodinium (Margalefidinium) polykrikoides, are allelopathic and may have unique associations with bacteria, a comprehensive assessment of the planktonic communities associated with these blooms has been lacking. Here, we used high-throughput amplicon sequencing to assess size fractionated (0.2 and 5 μm) bacterial (16S) and phytoplankton assemblages (18S) associated with blooms of C. polykrikoides during recurrent blooms in NY, USA. Over a three-year period, samples were collected inside ('patch') and outside ('non-patch') dense accumulations of C. polykrikoides to assess the microbiome associated with these blooms. Eukaryotic plankton communities of blooms had significantly lower diversity than non-bloom samples, and non-bloom samples hosted 30 eukaryotic operational taxonomic units (OTUs) not found within blooms, suggesting they may have been allelopathically excluded from blooms. Differential abundance analyses revealed that C. polykrikoides blooms were significantly enriched in dinoflagellates (p0.2μm fraction of blooms was dominated by an uncultured bacterium from the SAR11 clade, while the >5μm size fraction was co-dominated by an uncultured bacterium from Rhodobacteraceae and Coraliomargarita. Two bacterial lineages within the >0.2μm fraction, as well as the Gammaproteobacterium, Halioglobus, from the >5μm fraction were unique to the microbiome of blooms, while there were 154 bacterial OTUs only found in non-bloom waters. Collectively, these findings reveal the unique composition and potential function of eukaryotic and prokaryotic communities associated with C. polykrikoides blooms

    In situ life-cycle stages of Alexandrium fundyense during bloom development in Northport Harbor (New York, USA)

    No full text
    7 pages, 4 figures, 3 tablesKnowledge of the specific life-cycle dynamics during harmful algal bloom (HAB) development is essential for understanding and forecasting the onset, evolution and future occurrence of these events. Life-cycle stages of the toxic dinoflagellate Alexandrium fundyense were monitored both in the water column and in the sediments from the onset to the decline of a bloom in Northport Harbor (New York, USA). Moreover, excystment and encystment were investigated in situ through the deployment of emergence and sediment traps, respectively. The bloom, the largest ever recorded on the east coast of the US south of Massachusetts, persisted for 6 weeks between April and June 2008, and reached maximum vegetative cell abundances of 1.3 × 106 cells l−1. Resting cysts in the surface sediments were quantified at the onset of the bloom, all of which germinated during the development of the bloom. Excystment of these resting cysts provided inoculum of vegetative cells for bloom development. In the water column, first detection of planozygotes occurred during the exponential phase of the bloom at vegetative cell abundances of ∼104 cells l−1. Nonmotile planozygotes and resting cysts were observed in the sediment traps before the first peak of vegetative cells, coinciding with the detection of planktonic planozygotes. The estimated encystment and planozygote percentages were relatively low, indicating that a small proportion of the vegetative cell population was involved in sexual reproduction. However, encystment was a crucial process for replenishing the cyst stock of the A. fundyense population in the sediments as cyst densities were low before the bloom but high after it. For the first time, formation of pellicle cysts in the field by A. fundyense was observed, which coincided with high vegetative cell abundances in the water column during the bloomThis research was funded by a BE-DGR-2007 fellowship from the AGAUR (Generalitat de Catalunya) and by the New York State Department of Environmental Conservation, NY Sea Grant, and the USEPA's Long Island Sound Study. The work of E. Garcés was supported by a Ramon y Cajal contract from the MICINN.[SS]Peer reviewe

    Nitrogen stable isotopes in the shell of Mercenaria mercenaria trace wastewater inputs from watersheds to estuarine ecosystems

    Get PDF
    Author Posting. © Inter-Research, 2008. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Aquatic Biology 4 (2008): 99-111, doi:10.3354/ab00106.We tested the usefulness of δ15N values in the organic matrix of whole shells from Mercenaria mercenaria as tracers of anthropogenic nitrogen inputs to coastal ecosystems. Low and high stringency acidification methods were used to define parameters for reliable δ15N determination in shell material for comparison with δ15N values in soft tissues. δ15N values in shell from transplanted and native clams reflected %-wastewater contribution to estuaries, but were 2.3 to 2.5% lighter than δ15N values in soft tissues. Accuracy of δ15N values in shell material depended on recovering a sufficient quantity of organic N from shell (~70 µg) and was not altered by acidification method. Reliable δ15N values were obtained with as little as 80 mg of shell and using 100 µl of acid, but higher stringency methods (treating more shell with more acid for longer duration) typically yielded more N for subsequent stable isotope analysis. Conversely, higher concentrations of acid reduced N recovery. These results suggest that the content of N recovered was of greater concern to obtaining reliable δ15N values from shell material than acidification effects. Differences between δ15N values in shell material and soft tissues likely reflected differences in N assimilation among tissues. In combination with other analyses, this method may be applied to refine modern and historical trophic assessments and discern natural from anthropogenic influences on coastal ecosystemsThis work was funded by the Sea Grant Program of the Massachusetts Institute of Technology (Award 20-240-9011-5)
    corecore