132 research outputs found

    Direct Dynamics Simulations Using Hessian-Based Predictor-Corrector Integration Algorithms

    Get PDF
    In previous research [J. Chem. Phys.111, 3800 (1999)] a Hessian-based integration algorithm was derived for performing direct dynamics simulations. In the work presented here, improvements to this algorithm are described. The algorithm has a predictor step based on a local second-order Taylor expansion of the potential in Cartesian coordinates, within a trust radius, and a fifth-order correction to this predicted trajectory. The current algorithm determines the predicted trajectory in Cartesian coordinates, instead of the instantaneous normal mode coordinates used previously, to ensure angular momentumconservation. For the previous algorithm the corrected step was evaluated in rotated Cartesian coordinates. Since the local potential expanded in Cartesian coordinates is not invariant to rotation, the constants of motion are not necessarily conserved during the corrector step. An approximate correction to this shortcoming was made by projecting translation and rotation out of the rotated coordinates. For the current algorithm unrotated Cartesian coordinates are used for the corrected step to assure the constants of motion are conserved. An algorithm is proposed for updating the trust radius to enhance the accuracy and efficiency of the numerical integration. This modified Hessian-based integration algorithm, with its new components, has been implemented into the VENUS/NWChem software package and compared with the velocity-Verlet algorithm for the H2CO→H2+CO, O3+C3H6, and F−+CH3OOH chemical reactions

    The Destination

    Get PDF
    It is sometimes difficult to realize that you are making progress, especially in medical school. You fight your way through the dark woods, getting scratched by loose branches, not quite sure if your feet are pointed in the right direction. Sometimes the journey feels like the mountain is collapsing, your feet are falling under you, your fingers throb from frost bite. Yet, there are the days where you stop and see the beauty of the journey in front of you. The winter is not always a cold, barren place, it holds so much beauty and it is worth the fight to continue

    Loss of capillary pericytes and the blood–brain barrier in white matter in poststroke and vascular dementias and Alzheimer’s disease

    Get PDF
    White matter (WM) disease is associated with disruption of the gliovascular unit, which involves breach of the blood‐brain barrier (BBB). We quantified pericytes as components of the gliovascular unit and assessed their status in vascular and other common dementias. Immunohistochemical and immunofluorescent methods were developed to assess the distribution and quantification of pericytes connected to the frontal lobe WM capillaries. Pericytes with a nucleus were identified by collagen 4 (COL4) and platelet derived growth factor receptor‐ÎČ (PDGFR‐ÎČ) antibodies with further verification using PDGFR‐ÎČ specific ELISA. We evaluated a total of 124 post‐mortem brains from subjects with post‐stroke dementia (PSD), vascular dementia (VaD), Alzheimer’s disease (AD), AD‐VaD (Mixed), and post‐stroke non‐demented (PSND) stroke survivors as well as normal ageing controls. COL4 and PDGFR‐ÎČ reactive pericytes adopted the characteristic “crescent” or nodule‐like shapes around capillary walls. We estimated densities of pericyte somata to be 225 ±38 and 200 ±13 (SEM) per COL4 mm2 area or 2.0 ±0.1 and 1.7 ±0.1 per mm capillary length in young and older ageing controls. Remarkably, WM pericytes were reduced by ~35‐45 percent in the frontal lobe of PSD, VaD, Mixed and AD subjects compared to PSND and controls subjects (P<0.001). We also found pericyte numbers were correlated with PDGFR‐ÎČ reactivity in the WM. Our results first demonstrate a reliable method to quantify COL4‐positive pericytes and then indicate that deep WM pericytes are decreased across different dementias including PSD, VaD, Mixed and AD. Our findings suggest that down regulation of pericytes is associated with the disruption of the BBB in the deep WM in several ageing‐related dementias

    The generality of the GUGA MRCI approach in COLUMBUS for treating complex quantum chemistry

    Get PDF
    The core part of the program system COLUMBUS allows highly efficient calculations using variational multireference (MR) methods in the framework of configuration interaction with single and double excitations (MR-CISD) and averaged quadratic coupled-cluster calculations (MR-AQCC), based on uncontracted sets of configurations and the graphical unitary group approach (GUGA). The availability of analytic MR-CISD and MR-AQCC energy gradients and analytic nonadiabatic couplings for MR-CISD enables exciting applications including, e.g., investigations of π-conjugated biradicaloid compounds, calculations of multitudes of excited states, development of diabatization procedures, and furnishing the electronic structure information for on-the-fly surface nonadiabatic dynamics. With fully variational uncontracted spin-orbit MRCI, COLUMBUS provides a unique possibility of performing high-level calculations on compounds containing heavy atoms up to lanthanides and actinides. Crucial for carrying out all of these calculations effectively is the availability of an efficient parallel code for the CI step. Configuration spaces of several billion in size now can be treated quite routinely on standard parallel computer clusters. Emerging developments in COLUMBUS, including the all configuration mean energy multiconfiguration self-consistent field method and the graphically contracted function method, promise to allow practically unlimited configuration space dimensions. Spin density based on the GUGA approach, analytic spin-orbit energy gradients, possibilities for local electron correlation MR calculations, development of general interfaces for nonadiabatic dynamics, and MRCI linear vibronic coupling models conclude this overview

    Comparative effects of RRR-alpha- and RRR-gamma-tocopherol on proliferation and apoptosis in human colon cancer cell lines

    Get PDF
    BACKGROUND: Mediterranean societies, with diets rich in vitamin E isoforms, have a lower risk for colon cancer than those of northern Europe and the Americas. Vitamin E rich diets may neutralize free radicals generated by fecal bacteria in the gut and prevent DNA damage, but signal transduction activities can occur independent of the antioxidant function. The term vitamin E represents eight structurally related compounds, each differing in their potency and mechanisms of chemoprevention. The RRR-γ-tocopherol isoform is found primarily in the US diet, while RRR-α-tocopherol is highest in the plasma. METHODS: The effectiveness of RRR-α- and RRR-γ-tocopherol at inhibiting cell growth and inducing apoptosis in colon cancer cell lines with varying molecular characteristics (SW480, HCT-15, HCT-116 and HT-29) and primary colon cells (CCD-112CoN, nontransformed normal phenotype) was studied. Colon cells were treated with and without RRR-α- or RRR-γ-tocopherol using varying tocopherol concentrations and time intervals. Cell proliferation and apoptosis were measured using the trypan blue assay, annexin V staining, DNA laddering and caspase activation. RESULTS: Treatment with RRR-γ-tocopherol resulted in significant cell death for all cancer cell lines tested, while RRR-α-tocopherol did not. Further, RRR-γ-tocopherol treatment showed no cytotoxicity to normal colon cells CCD-112CoN at the highest concentration and time point tested. RRR-γ-tocopherol treatment resulted in cleavage of PARP, caspase 3, 7, and 8, but not caspase 9. Differences in the percentage cell death and apoptosis were observed in different cell lines suggesting that molecular differences in these cell lines may influence the ability of RRR-γ-tocopherol to induce cell death. CONCLUSION: This is the first study to demonstrate that multiple colon cancer cell lines containing varying genetic alterations will under go growth reduction and apoptosis in the presence of RRR-γ-tocopherol without damage to normal colon cells. The amount growth reduction was dependent upon the molecular signatures of the cell lines. Since RRR-γ-tocopherol is effective at inhibition of cell proliferation at both physiological and pharmacological concentrations dietary RRR-γ-tocopherol may be chemopreventive, while pharmacological concentrations of RRR-γ-tocopherol may aid chemotherapy without toxic effects to normal cells demonstrated by most chemotherapeutic agents

    Four steps for the Earth: mainstreaming the post-2020 global biodiversity framework

    Get PDF
    The upcoming Convention on Biological Diversity (CBD) meeting, and adoption of the new Global Biodiversity Framework, represent an opportunity to transform humanity's relationship with nature. Restoring nature while meeting human needs requires a bold vision, including mainstreaming biodiversity conservation in society. We present a framework that could support this: the Mitigation and Conservation Hierarchy. This places the Mitigation Hierarchy for mitigating and compensating the biodiversity impacts of developments (1, avoid; 2, minimize; 3, restore; and 4, offset, toward a target such as "no net loss" of biodiversity) within a broader framing encompassing all conservation actions. We illustrate its application by national governments, sub-national levels (specifically the city of London, a fishery, and Indigenous groups), companies, and individuals. The Mitigation and Conservation Hierarchy supports the choice of actions to conserve and restore nature, and evaluation of the effectiveness of those actions, across sectors and scales. It can guide actions toward a sustainable future for people and nature, supporting the CBD's vision

    Many Labs 5:Testing pre-data collection peer review as an intervention to increase replicability

    Get PDF
    Replication studies in psychological science sometimes fail to reproduce prior findings. If these studies use methods that are unfaithful to the original study or ineffective in eliciting the phenomenon of interest, then a failure to replicate may be a failure of the protocol rather than a challenge to the original finding. Formal pre-data-collection peer review by experts may address shortcomings and increase replicability rates. We selected 10 replication studies from the Reproducibility Project: Psychology (RP:P; Open Science Collaboration, 2015) for which the original authors had expressed concerns about the replication designs before data collection; only one of these studies had yielded a statistically significant effect (p < .05). Commenters suggested that lack of adherence to expert review and low-powered tests were the reasons that most of these RP:P studies failed to replicate the original effects. We revised the replication protocols and received formal peer review prior to conducting new replication studies. We administered the RP:P and revised protocols in multiple laboratories (median number of laboratories per original study = 6.5, range = 3?9; median total sample = 1,279.5, range = 276?3,512) for high-powered tests of each original finding with both protocols. Overall, following the preregistered analysis plan, we found that the revised protocols produced effect sizes similar to those of the RP:P protocols (?r = .002 or .014, depending on analytic approach). The median effect size for the revised protocols (r = .05) was similar to that of the RP:P protocols (r = .04) and the original RP:P replications (r = .11), and smaller than that of the original studies (r = .37). Analysis of the cumulative evidence across the original studies and the corresponding three replication attempts provided very precise estimates of the 10 tested effects and indicated that their effect sizes (median r = .07, range = .00?.15) were 78% smaller, on average, than the original effect sizes (median r = .37, range = .19?.50)

    Mudd’s disease (MAT I/III deficiency): a survey of data for MAT1A homozygotes and compound heterozygotes

    Full text link
    • 

    corecore