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Abstract 
 
Dynamics simulations were performed to study soft landing of SiNCS+ and (CH3)2SiNCS

+ ions 

on a self-assembled monolayer of perfluorinated alkanethiols on gold (F-SAM). Using classical 

trajectories, the short-time collision dynamics (ps scale) were investigated to analyze trapping 

probabilities for these silyl ions. Thermal desorption of trapped ions was simulated by using 

“boxed molecular dynamics” (BXD). The simulations predict substantial ion trapping in the 

collisions of these ions with the F-SAM, especially when the projectile’s incident direction is 

normal to the surface. Desorption of the SiNCS+ ion occurs significantly faster than desorption 

of the methylated ion, which may explain why soft landing was experimentally observed for the 

latter ion only [Miller, S. A.; Luo, H.; Pachuta, S. J.; Cooks, R. G., Science 1997, 275, 1447-

1450;  Luo, H.; Miller, S. A.; Cooks, R. G.; Pachuta, S. J., Int. J. Mass. Spectrom. Ion Proc. 

1998, 174, 193-217]. The free energy profiles for desorption of these ions show minima at 15 Å 

above the gold slab, indicating that the silyl ion has a preference to reside on top of the 

monolayer. Deep penetration of the ion into the monolayer is prevented by a large free energy 

barrier. However, according to DFT calculations, if this process occurred the SiNCS+ ion could 

strongly bind to the Au(111) surface that supports the perfluorinated alkanethiol chains. 

 

Keywords: Soft landing, self-assembled monolayers, silyl ions, classical trajectory calculations, 

molecular dynamics simulations, accelerated dynamics. 
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Introduction 

Ion/surface collisions may lead to a variety of competing processes that can be used to 

investigate the chemical nature of projectile ions and target surfaces.1  At hyperthermal energies 

(<100 eV), the most relevant events that can take place when ions collide with molecular 

surfaces are:1-2 (i) non-reactive scattering of the projectile ion, (ii) surface-induced dissociation 

(SID), (iii) ion/surface reactions, (iv) sputtering, (v) soft landing, and (vi) reactive landing. The 

term sputtering refers to processes in which the collision induces the ejection of surface species. 

This includes pre-existing ions adsorbed on the surfaces as well as fragments of molecular units 

that form the surface. Soft landing (SL) is used to name the deposition of intact ions on target 

surfaces, with or without retention of the initial charge.3-11 Reactive landing (RL) takes place 

when a covalent bond is formed between the landed ion and the surface. The main factors that 

govern the efficiencies of these processes are the physical and chemical properties of the surface, 

the nature of the ion, the collision energy, and the incident angle. For low collision energies (on 

the order of 10 eV), SL may be the dominant process. The first SL experiments were reported in 

1977 by Cooks and co-workers,12 but it was not until the late 1990’s that it began to receive 

significant attention when it was proposed as a practical method for preparing modified 

surfaces.13 The advantage of SL over other methods of preparation of materials resides in the 

high selectivity of the projectile ion (chemical, isotopic, structural) together with some control 

over the collision process through the selection of the projectile translational energy.1, 14-15  

The kind of projectile ions that have been used in SL studies include small and medium 

size polyatomic ions,12-13, 16-21 atomic and organometalic clusters,22-24 peptides,5, 21, 25-30 

proteins,26, 31-35 DNA,36 and even viruses.37 Among the molecular surfaces employed as targets, 
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 4

self-assembled monolayers (SAMs) of alkanethiolates on gold38 have been the most widely used 

for several reasons.1  They can be prepared with low levels of surface contamination, they are 

stable in ultrahigh vacuum conditions, and have a well-characterized and highly ordered 

structure, therefore making them excellent candidates for fundamental studies. In addition, the 

ease with which the terminal groups of the chains can be functionalized by different chemical 

species opens a wide variety of possibilities for the design of novel materials.  

In collisions of silyl ions with a perfluorinated alkanethiol self-assembled monolayer on 

gold (F-SAM), bombardment of an F-SAM surface for 1 h with (CH3)2SiNCS
+ and subsequent 

bombardment with 60 eV Xe+ ions led to a peak at m/z 116 (i.e., the m/z ratio of this silyl ion)  in 

the sputtering spectrum.13, 16, 39   This peak was also observed when the bombarded F-SAM was 

kept in the scattering chamber under vacuum for 15 h, although the relative intensity dropped by 

a factor of two. These results were interpreted as an evidence for soft landing with charge 

retention,13, 16 and were observed for collision energies, Ei, in the range of 5-10 eV and an 

incident angle, θi, of 0º (i.e., normal to the surface), as well as for Ei = 20 eV and incident angles 

of 0 and 55º. Interestingly, when the collision energy was 30 eV and the incident angle was 55º, 

the sputtering spectrum did not show the peak at m/z 116. On the other hand, when SiNCS+ was 

collided with the F-SAM surface (Ei = 5-10 eV and θi = 0º), the subsequent sputtering spectra did 

not show a peak for this ion, suggesting that SL did not occur for this species. Analyses of the 

sputtering spectra obtained from different Xe+ collision energies led Cooks and co-workers16 to 

conclude that the (CH3)2SiNCS
+ ion is relatively strongly trapped in the surface, and that the 

methyl groups may increase the attractive interaction with the monolayer and facilitate trapping 

of the ion by the disturbed perfluoroalkane chains.13, 16  
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 5

To gain some insight into the mechanisms that govern soft landing of small polyatomic 

ions on SAM surfaces, we report an investigation on the short-time dynamics of collisions of the 

SiNCS+ and (CH3)2SiNCS
+ ions with an F-SAM surface, and the subsequent long-time 

desorption dynamics of trapped ions. The key questions addressed in this work are: (1) Are the 

trapping probabilities for the SiNCS+ and (CH3)2SiNCS
+ ions very different from each other? 

And how do they vary with collision energy and incident angle? (2) How different are the ion-

surface interaction energies for these two ions? (3) Is the observed behavior (i.e., soft landing 

only for the methylated ion) the consequence of significant differences between time scales for 

ion desorption? (4) Can deep penetration into the monolayer and subsequent ion neutralization 

(by electron transfer from the Au surface) be important for these ions?  

The short-time (ps scale) dynamics is investigated here by classical trajectories, 

characterized by the values of the collision energy and incident angle. Trapping will occur when 

a substantial fraction of the collision energy is transferred to the monolayer and to the internal 

modes of the ion, so that there is not enough recoil translational energy for the ion to escape. 

Eventually (in the ps scale), the excited modes in the ion and in the surrounding region will 

dissipate the excess energy and reach thermal equilibrium at the surface temperature. Since the 

experiments show that (CH3)2SiNCS
+ ions remain trapped in the F-SAM for days, 13, 16 an 

“accelerating” technique is needed to conduct molecular dynamics of desorption of these ions 

from the F-SAM. In this work, we employed “boxed” molecular dynamics,40-42 a convenient 

method for accelerating rare events, which is outlined in the following section together with the 

remaining computational details of the simulations reported in this paper.    

 

Computational details 
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 6

Analytical potential. The potential energy function (or force field) used for the dynamics 

simulations reads  

� � ������ � ���	
 � ���������	
            (1) 

where ������ is the intramolecular potential of the silyl ion, ���	
 is the intramolecular potential 

of the F-SAM,43-44 and ���������	
	is the interaction potential between the silyl ion and the 
surface.45 The intramolecular potentials ������ were developed in this work. For the smallest ion, 

it is given by a sum of harmonic stretches and bends: 

������ � ∑ �
����� � ����� � ∑ �

� ���� � �����           (2) 

where the force constants �� and �� were obtained by a fit to normal mode vibrational 

frequencies calculated by density functional theory (DFT), using the B97-D method46-47 and the 

TZVPP basis set, as implemented in TURBOMOLE.48 The	�� and �� parameters were taken 

from the DFT equilibrium geometry and are listed in Table S1 in the Supporting Information. 

The comparison between the DFT frequencies and those calculated with the analytical potential 

is shown in Table S2. 

The intramolecular potential function of the (CH3)2SiNCS
+ ion requires torsional terms 

and an out-of-plane wag term besides stretching and bending interactions. The Si-C stretching 

interactions were represented by Morse functions and the other stretches by harmonic functions. 

Accordingly, the intramolecular potential for the (CH3)2SiNCS
+ reads 

���� � ∑ �
����� � ���������� � ∑ ���1 � !�"�	�	#�$��%���� � ∑ �

� ���� � ����� �
∑ �

� �&�' � (��� � ∑ ∑ �
��),��1 � cos�./ � 0�����

      (3)
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 7

where the force constants for the wag, bends, and torsions involving the Si-C bonds include a 

switching function that removes these potential terms as a Si-C bond breaks: 

�� � ���12313�              (4) 

�& � �&�12312�124              (5) 

�) � �)�12313�1�4              (6) 

In these equations, the superscript 0 is used to indicate conventional force constants, and the sij 

refer to switching functions depending on the distance between atoms i and j, having the form 

1�6 � !�789�	89�	#$: ,			��6 ; ��             

1�6 � 1.0			��6 = ��         (7) 

with cij being set to 0.1 for all cases. The use of this type of switching functions has been 

described elsewhere.49 Figure 1a displays the different interactions that include this switching 

function. The second term in equation 3 corresponds to the Morse potentials for the Si-C bonds. 

De is the equilibrium dissociation energy. The first and the second dissociation energies were 

calculated in this work by Gaussian-4 theory,50 and are shown in Figure 1b. An attenuation 

function was included to smoothly switch from De,1 (98.98 kcal/mol) to De,2 (39.50 kcal/mol) as 

a methyl group dissociates: 

�� � ��,� � ���,� � ��,�$ �� �1 � tanh�BC���� � D��     (8) 

where BCEF�G is the average Si-C bond length. C was set to 5 Å, the distance at which De = 

(De,1+De,2)/2. The	�� and �� parameters were taken from the B97-D/TZVPP equilibrium 

geometry, and the force constants were obtained by a fit to B97-D/TZVPP frequencies. The 

parameters and the comparison between the DFT frequencies and those calculated with the 

analytical potential are shown in Tables S3 and S4, respectively, in the Supporting Information.  
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 8

The intramolecular potential for the F-SAM, Vsurf, is based on a force field of 

perfluoroalkanes developed by Borodin et al.51 It comprises of harmonic terms for stretching and 

bending interactions, cosine series for dihedrals, and Buckingham-type potentials52 for 

nonbonded interactions. The F-SAM surface is composed of 48 chains of CF3(CF2)7S adsorbed 

on a fixed Au layer of 225 atoms. A full description of the F-SAM model has been detailed in the 

literature.43-44  

 The intermolecular term, Vsilyl-surf, is written as a sum of two-body functions based on the 

Buckingham potential:52 

� � 	∑ ∑ HI!�3	89 �	 �	89J �	 K	89LM6�             (9) 

where subscripts i and j refer to atoms of the silyl ion and the F-SAM, respectively. For each ion, 

parameters A to F were obtained in previous work45 by a fit to potential energy curves of CF4 

interacting with the ion, calculated at the B97-D/TZVPP level. The good performance of this 

DFT method was tested, for the SiNCS+ ion, by a comparison with interaction curves determined 

by focal point CCSD(T) calculations. As in previous parameterizations of gas/F-SAM 

intermolecular potentials,43, 53-59 CF4 was used as a model compound for the C and F atoms of 

perfluoroalkane chains. The fitted potentials were shown to model quite well the potential energy 

curves calculated by B97-D/TZVPP for the silyl ions approaching nine molecules of 

perfluorobutane.45       

 

Short-time collision dynamics. We used the Venus program60-61 to explore the dynamics of 

collisions of the silyl ions with the F-SAM and the evolution of the system during the subsequent 

picoseconds. We prepared ensembles of trajectories for collision energies of 10 and 30 eV, and 

incident angles of 0º and 55º. The incident angle is defined as the angle formed between the 
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 9

initial velocity vector of the projectile ion and the surface normal. In these simulations, the zero-

point energy (ZPE) was added to the normal modes of the silyl ion, and the total rotational 

angular momentum of the projectile was set to zero. The temperature of the F-SAM was set to 

300 K. We notice that the experiments of Cooks and co-workers13, 16, 39 were carried out at room 

temperature. 

For each different pair of Ei and θi values, ensembles of 2000 trajectories were 

propagated with a fixed time step of 0.3 fs, using the Adams-Moulton algorithm in VENUS05.60 

The initial separation between the projectile and the surface aiming point was 40 Å (≈52 Å above 

the gold atoms). Trajectories were stopped when the total integration time exceeded 60 ps or 

when the distance between the ion and the surface was 45 Å. Before the beginning of the 

trajectory simulations, the surface was thermally equilibrated by a 2ps trajectory in which the 

atomic velocities were scaled every 100 time steps to fit a Maxwell-Boltzmann distribution at 

300 K. This structure was used as the initial configuration for the first trajectory. A second 100 fs 

equilibration run, starting from the previous configuration (i.e., the F-SAM configuration for the 

first trajectory at time t = 0), was performed before the second trajectory. This process was 

repeated before initiation of each trajectory. Periodic boundary conditions based on the image 

vector convention62 were used for the simulations.  

 

Long-time desorption dynamics. The simulations performed to estimate time scales for 

desorption of silyl ions were conducted with boxed molecular dynamics (BXD),40-42 utilizing a 

new reaction coordinate implemented in the CHARMM program.63-64  This new routine allows 

the user to arbitrarily define a group of atoms, track their mass weighted separation in the 

Cartesian z-direction, and perform velocity inversion for the appropriate z-components of the 

Page 9 of 38

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 10

atomic velocity. The basis of the BXD method for a general reaction coordinate or progress 

parameter is illustrated in Figure 2, which shows the reaction coordinate ρ split into m intervals 

or boxes. The trajectory is initiated in one of them (e.g., box 1) and confined in the box by 

velocity inversion along the reaction coordinate each time the system hits the boundaries. After a 

given number of hits, the trajectory is allowed to enter into the neighboring box where, again, it 

is locked until the specified number of hits is reached. The process is repeated until the end of 

the trajectory. The rate coefficient for passage from box i−1 to box i is given by the ratio 

between the number of hits against the boundary at ρi and the lifetime of the trajectory in box i, 

that is, the inverse of the mean first passage times (MFPTs). Since rate coefficients are related to 

equilibrium constants and free energies, BXD also provides thermodynamic information through 

the following relationship: 

N���,� � O8PQ,8
O8,8PQ � exp U� ∆W8PQ,8

XY Z                                  (10) 

where ki−1,i is the rate coefficient for transfer from box i−1 to box i and ki,i−1 is the rate coefficient 

for the reverse process; Ki−1,i and ∆Gi−1,i are the equilibrium constant and the free energy 

difference between the boxes, respectively. As detailed elsewhere,40-42 it is possible to define 

smaller bins within boxes and obtain box-to-box rate coefficients and corresponding free 

energies with higher resolution. 

Once the box-to-box rate coefficients are obtained, the time evolution of the system can 

be determined from the following set of simultaneous first-order linear differential equations: 

[�Q�)�
[) � ���,�.��\� � ��,�.��\�  

..... 

[�8�)�
[) � ����,�.����\� � ��]�,�.�]��\� � ���,��� � ��,�]�$.��\�             (11) 
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..... 

[�^�)�
[) � �_��,_._���\� � �_,_��._�\�  

 

where ni(t) gives the population of box i at time t. This set of equations can be conveniently 

written in matrix form 

[`�)�
[) � a`�\�              (12) 

where n(t) is the population vector and M is the matrix of the rate coefficients. The general 

solution to this equation is given by65 

`�\� � ∑ b6c6!λ9)_6%�           (13) 

where λj and uj are the eigenvalues and corresponding eigenvectors of M, and the cj are 

coefficients that depend upon the initial populations n(0). In this work, we used the initial 

populations given by a thermal distribution at 300 K. Within the approximations of classical 

dynamics and the model potential energy used for the simulations, the calculation of the above 

quantities is accurate so long as the dynamics of the system is statistical and the trajectory visits 

all the relevant phase space. In practice, one may run independent trajectories, analyze the 

convergence of results, and run new trajectories if necessary.  

 For the present simulations, the reaction coordinate was defined as the distance (or 

height) of the center-of-mass of the silyl ion to the gold layer (h), and it was split into 44 boxes 

of 0.5 Å length, ranging from 8 to 30 Å. Free energies were determined with a resolution of 0.1 

Å length. The simulations were conducted with Langevin dynamics at 300 K, using a time step 

of 1 fs and a friction coefficient of 5 ps−1, which was the minimal friction coefficient we found to 

give satisfactory temperature profiles. Because the non-bonded interactions of the analytical 

potential used in this work are modeled by functions based on the Buckingham potential, rather 
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 12

than by Lennard-Jones potentials and point-charge electrostatic interactions, the CHARMM 

program was modified to incorporate these generalized Buckingham terms. For these long-time 

dynamics simulations, the C-Si bonds of the (CH3)2SiNCS
+ ion were represented by harmonic 

functions, and the F-SAM surface consisted of 108 chains of CF3(CF2)7S adsorbed on a layer of 

441 fixed Au atoms. As for the short-time collision dynamics, two-dimensional rhomboidal 

periodic boundary conditions were applied in the simulations.62 

The force field used for our simulations did not incorporate an interaction term between 

the ion and the Au surface. This interaction may be relevant for the calculation of desorption 

rates. The development of an accurate potential for this interaction would be a very involved 

task, and it was not done in the present study. However, we used a simple approach with which 

we could integrate, in an approximate way, the effect of the ion/Au surface interaction in the free 

energies and box-to-box rate coefficients. The approach is based on the classical point 

charge/metal surface expression, which reads66 

��d � � ef.��
εg               (14) 

where the potential energy is given in kcal/mol, ε is the dielectric constant and h is the distance 

of the silicon atom to the Au surface. We assumed that all the ion charge is located on the Si 

atom, as the B97-D/TZVPP calculations show that most of the charge is concentrated on this 

atom. We used ε = 1.55, which is the mean value between the dielectric constant of 

polytetrafluoroethylene67 and that of vacuum. BXD simulations including this charge image 

potential would be very time consuming, because the range of this interaction is very long (using 

equation 14, the interaction energy at 100 Å is still about 0.5 kcal/mol). Instead, we used the 

following approximation to calculate box-to-box rate coefficients, ����,��d , that contain the effect 
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of this potential. We assumed that, in the presence of the image potential, the free energy 

difference between neighboring boxes i−1 and i, ∆h���,��d , can be approximated by 

∆h���,��d � ∆h���,� � ∆����,��d         (15) 

where ∆����,��d   is the difference between the values of the image potential calculated in the 

midpoints of the i−1 and i boxes. Now, following equation 10, we have 

O8PQ,88i
O8,8PQ8i � expj� ∆W8PQ,88i

XY k � O8PQ,8
O8,8PQ exp j�

∆l8PQ,88i
XY k                     (16) 

The image potential varies only slightly from box to box, so that it is a reasonable approximation 

to assign half of ∆V
ip to each of the boxes. Accordingly, the individual rate coefficients are 

calculated as: 

����,��d � ����,�exp j� ∆l8PQ,88i
�XY k         (17) 

and 

��,����d � ��,���exp j� ∆l8PQ,88i
�XY k        (18) 

 

Density functional theory (DFT) calculations. We also investigated the close interaction 

between the silyl ions and the Au surface to consider the possibility that the ion penetrates deeply 

into the monolayer and approaches the Au surface. To this end, we performed DFT calculations 

using the generalized gradient approximation (GGA) for the exchange-correlation functional of 

Perdew, Burke, and Ernzerhof (PBE),68 implemented in the Vienna ab initio simulation package 

(VASP).69-71  To describe the effective potential of the core electrons, the projector-augmented 
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wave (PAW) method72-73 was utilized. A cutoff energy of 450 eV for the plane wave expansion 

and a Methfessel Paxton smearing74 of 0.2 eV for the occupation of electronic states were 

chosen. The Brillouin-zone sampling was performed with a 3 x 3 x 1 k-point mesh according to 

the Monkhorst-Pack grid.75 

The Au(111) surface was modeled by a four-layer slab cut from the bulk crystal whose 

structure was optimized beforehand. The gold slab, which consisted of 12 atoms per layer, and 

the ion were placed in a 3-dimensional periodic cell separated by ≈ 23 Å of vacuum in the 

surface normal direction. In order to simulate a positively charged molecule on the Au(111) 

surface, a uniform negative background compensation charge was introduced to maintain the 

charge neutrality of the unit cell. During the geometry optimizations, the lowermost two layers of 

the Au(111) surface were frozen, while the topmost two layers and the whole molecule were 

fully relaxed. The local minimum of potential energy was searched by a conjugate-gradient 

algorithm until the forces on each ion were smaller than 0.02 eV Å−1. Different initial 

configurations were explored in order to determine the most favorable adsorption sites. The 

atomic charge distribution was computed by the topological analysis of the electron density 

(including the core charge), based on the quantum theory of atoms in molecules (QTAIM)76-78 

and using an analysis program79 for VASP. 

 

Results and discussion 

Short-time collision dynamics. Trajectories were classified according to the values of the 

following quantities: the minimum distance (or height h) of the projectile center-of-mass to the 

Au plane, hmin, the number of inner turning points (ITPs) in the direction of the surface normal 

that the ion experiences during the collision, and the time interval during which the ion interacts 
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with the surface. Specifically, we considered that the projectile ion penetrates into the monolayer 

when the height of the ion is below 11.6 Å. This limiting distance (hlimit in Figure 3) was 

calculated as the average value 0.5〈oCFr � oCF:〉 , where oCFr  is the height of the C atom of the 

methyl group of an F-SAM chain and oCF: is that of the adjacent C atom. For this calculation, we 

used a structure obtained by a short molecular dynamics simulation of the monolayer at 300 K. 

Two types of penetrating trajectories were identified in the simulations: (i) trajectories in which 

the ion penetrates directly with no ITPs (direct-penetration), and (ii) trajectories in which ion 

penetration occurs after two or more ITPs (physisorption-penetration). The other types of 

trajectories are non penetrating, and include (iii) direct scattering, when the ion rebounds after 

collision with only one ITP, and (iv) physisorption, when the collision takes place with two or 

more ITPs. Figure 4 shows schematic drawings for trajectory types (ii)-(iv).  Finally, for a 

significant number of trajectories, the ion does not leave the surface during the 60 ps of 

integration. This type of trajectories will be referred to as trapped. Notice that trapped trajectories 

may involve physisorption and penetration but not direct scattering, and that the sum of 

trajectory types (i) to (iv) add up to 100%. The amount of trapped trajectories may be different to 

the sum of penetrating and physisorbing trajectories (the difference is due to the fraction of these 

trajectories that leave the monolayer before 60 ps). After 60 ps, one may expect that most of the 

excitation energy in the collision region was dissipated to the F-SAM and so that thermal 

equilibrium is essentially reached. Therefore, we may associate trapping with soft landing in a 

short-time, picosecond scale. 

 The percentages of the different types of trajectories are listed in Table 1. As can be seen, 

when the incident angle is 0º, most of the trajectories lead to direct penetration. However, when 

the angle increases to 55º, the percentage of this type of trajectories decreases dramatically, 
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being less than 5 and 20% for the collision energies of 10 and 30 eV, respectively. This behavior 

was also found for collisions of atomic oxygen with an alkanethiol self-assemble monolayer;80 

interestingly, some of the O-atoms approached the Au substrate. For θi = 55º, the majority of 

trajectories resulted in physisorption (10 eV) or physisorption-penetration (30 eV). Also, the 

percentage of direct scattering increases when going from θi = 0º to 55º. We notice that the 

criterion for classification of trajectories, particularly the selection of hlimit, is somewhat arbitrary. 

Clearly, there is no universal way to classify trajectories and here we followed the same criteria 

employed in previous studies of collisions of gases with an F-SAM.43, 58, 81 The percentages of 

different trajectory types may change significantly with the value of hlimit, as shown in Table S5 

of the Supporting Information for the case of Ei = 10 eV and θi = 0º.    

It is important to analyze the percentage of trajectories in which the ion remains trapped 

in the surface after the total integration time of 60 ps. For the collision energy of 10 eV, more 

than 80% of the trajectories are trapped in the monolayer when θi = 0º. When the incident angle 

is 55º (and Ei  = 10 eV), the percentage of trapped trajectories decreases substantially, especially 

for the small ion (15.7%). For Ei  = 30 eV and θi = 0º, the percentage of trapping is also 

substantial (around 70%).  Again, as the incident angle increases to 55º, the percentage of 

trapped trajectories decreases markedly, although the percentage of trapping is still significant 

(e.g., 9.1 % for (CH3)2SiNCS
+). Since soft landing of (CH3)2SiNCS

+ was not observed 

experimentally for Ei  = 30 eV and θi = 55º, these results suggest that our potential may 

overestimate the trapping probabilities.   

The simulations predict more trapping for the (CH3)2SiNCS
+ ion, except for Ei  = 30 eV 

and θi = 55º. This is a result of the extra vibrational modes in the methylated species, compared 

with SiNCS+, which facilitate more energy transfer from relative translational energy to 
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vibration, therefore leading to less energy in final translation. At the incident energy of 10 eV 

and for perpendicular collisions, the percent of energy transfer to vibration is 6.6% for SiNCS+, 

compared with 14.4% for (CH3)2SiNCS
+ (see Table S6). This result can be explained with a 

model for gas-surface energy transfer proposed very recently by three of us.82 The model shows 

that, for small projectiles like those studied here, transfer to vibration increases as a function of 

projectile’s size. For larger projectiles, however, transfer to vibration would be nearly constant 

and independent on the projectile’s size. This is because the increase in the number of vibrational 

degrees of freedom is offset by a mass effect and by the previous finding that only a reduced 

subset of “effective” vibrational degrees of freedom is activated in the collisions.82 The most 

relevant result of this section is that the simulations predict that the general behavior of both ions 

is quite similar to each other. 

 

Long-time desorption dynamics. Our simulations of short-time dynamics of collisions of silyl 

ions with the F-SAM monolayer predict that soft landing is likely for both ions. The 

experimental observation that only the methylated species is observed in the sputtering analysis 

could be explained if the thermal desorption of the two ions takes place on significantly different 

time scales. One of the advantages of the BXD method with respect to other common sampling 

methods, for example, umbrella sampling,83 is that it provides kinetic information in addition to 

thermodynamic properties. The box-to-box rate coefficients, calculated as the inverse MFPTs, 

are collected in Tables S7 and S8 for SiNCS+ and (CH3)2SiNCS
+, respectively. First passage 

times (FPTs) were corrected to remove fast recrossing events along the reaction coordinate, and 

the tables include both uncorrected coefficients and corrected values using a decorrelation time, 

τcorr, of 125 fs. In the later case, FPTs smaller than 125 fs were not included in the count for the 

evaluation of the MFPTs. The value of 125 fs was chosen as the maximum decorrelation time 
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which did not significantly affect the resultant box averaged probabilities, a procedure which was 

described in previous work.41 The kinetic equations resulting from the box-to-box rate 

coefficients gave solutions in which one of the eigenvalues was distinct from the others by 

several orders of magnitude. In such cases, this so-called ‘chemically significant’ eigenvalue 

dominates the sum of equation 13 and gives the characteristic rate constant of the chemical 

process under investigation,84 that is, the desorption of the silyl ions in the present study.  

According to our calculations without including the effect of the image potential, the rate 

constants for desorption of the SiNCS+ and (CH3)2SiNCS
+ ions from F-SAM at 300 K are 

4.3×104 and 8.5×102 s−1, respectively. Therefore, the SiNCS+ ion desorbs about 50 times faster 

than the methylated ion. The residence times of these ions, that is, the inverse of the rate 

constants, are 2.3×10−5 and 1.2×10−3 s, respectively.  The experiments suggest that this ion 

remains trapped in the F-SAM for hours, and even days, raising the prospect that our simulations 

underestimate the timescale for desorption of the methylated ion. 

The main source of error in our results probably arises from inaccuracies of the analytical 

potential. For example, the intramolecular potentials of the silyl ions were determined from 

vibrational frequencies and equilibrium geometries for the isolated ions. Therefore, these 

potentials may not be sufficiently accurate when the ions interact strongly with the surface, 

particularly during the short-time collision event and when the ion is inside the monolayer, since 

the structure of the ion could be highly altered. Also, as mentioned before, the force field used 

for the simulations did not include an interaction term with the Au surface. Including the effect 

of the charge image potential, as described in the section on computational details, the rate 

constants for desorption are calculated to be 0.66 s−1 for SiNCS+ and 1.1×10−2 s−1 for 

(CH3)2SiNCS
+. We notice that slight changes in the dielectric constant would affect the rate 
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constants substantially. These values give residence times of about 1.5 s for the SiNCS+ ion and 

91 s for the methylated species. Although the residence time of the latter ion is short in 

comparison with the experimental observation (i.e., the ion remains trapped for days), the 

qualitative picture provided by our simulations is that the SiNCS+ ion desorbs significantly faster 

than the (CH3)2SiNCS
+ ion. A rapid desorption of the SiNCS+ ion may be the reason why this 

ion is not observed in the experiments.   

 Figure 5 depicts the free energy profiles computed with the BXD approach for desorption 

of the SiNCS+ and (CH3)2SiNCS
+ ions, respectively, at 300 K. As mentioned before, the reaction 

coordinate ρ corresponds to the distance of the center-of-mass of the silyl ion to the Au surface 

(i.e., ρ = h). The simulations show that desorption takes place with no reverse barrier.  For the 

SiNCS+ ion, the simulations (without the image potential) predict a desorption free energy, 

∆Gdes, of 7.9 kcal/mol at 300 K. Using the image potential approximation, ∆hdes�d  is estimated to 

be 11.0 kcal/mol. Notice that for the free energies obtained with the image potential 

approximation, the graph only shows the curves up to 30 Å, so that it is necessary to add to the 

free energy value at 30 Å a contribution of 1.3 kcal/mol (i.e., ∆G from 30 Å to infinity). For the 

methylated ion, ∆Gdes at 300 K is predicted to be 10.3 kcal/mol, without the image potential, and 

13.4 kcal/mol with the charge image potential. Therefore, desorption of the methylated ion is 

about 2.4 kcal/mol more endergonic than desorption of the parent species. The global minima of 

the curves are located close to 15 Å, which indicates a preference for the ion to reside on (not 

inside of) the surface. However, the simulations predict that the most attractive interactions 

between these ions and the F-SAM, about −30 and −40 kcal/mol for SiNCS+ and (CH3)2SiNCS
+, 

respectively, occur when the ion is inside the monolayer, at a distance of ≈ 8 Å relative to the Au 

surface. These values were obtained from analyses of molecular dynamics trajectories (one for 
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each ion), starting each trajectory from a configuration in which the ion was located at about 7 Å, 

and using BXD to accelerate the desorption.  The value of 8 Å is close to the estimate of Cooks 

and co-workers for the (CH3)2SiNCS
+ ion (≈7 Å).16 As they anticipated, the attractive 

interactions are stronger for the methylated ion. It is the entropic contribution, favorable for 

desorption, which makes, according to our simulations, the top of the monolayer as the most 

favorable place for the ion to be located.  

 

Interaction with the Au surface. Although our simulations predict that deep penetration into 

the F-SAM is difficult, since the free energies increase significantly as the ions penetrate into the 

monolayer, the possibility that the ions approach the Au(111) surface and get neutralized or 

strongly chemisorbed should not be completely disregarded. If this happened to the SiNCS+ ion, 

the sputtering spectra might not reveal the existence of this ion in the monolayer. An accurate 

investigation on the interactions of the SiNCS+ and (CH3)2SiNCS
+ ions with the gold surface, 

including the perfluoroalkane chains, is impractical with the present computational resources. 

Instead, we performed DFT calculations to evaluate binding energies for chemisorption of 

SiNCS+ and (CH3)2SiNCS
+ ions on a Au(111) surface, as well as to explore the possibility of 

neutralization of the ion. As described above, the geometries of the whole ion and that of the 

topmost two gold layers were fully relaxed. The calculations predict that the SiNCS+ ion 

chemisorbs on Au(111) in a hollow face-centered cubic (fcc) site, with an orientation parallel to 

the surface normal, as depicted in Figure 6. The Si atom binds to three Au atoms, with a total 

binding energy of 60.0 kcal/mol (20 kcal/mol per bond), which is somewhat higher than the 

estimated bond strength for the Au−S links (≈ 50 kcal/mol).38 The distance between the Si atom 

and each of the closest Au atoms is predicted to be 2.38 Å. The SiNCS+ ion can also bind to only 
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one Au atom in an atop site, but this arrangement is less stable than that involving a hollow fcc 

site by 39.2 kcal/mol (i.e., by about 2/3 of the total interaction energy in the fcc binding). 

 For (CH3)2SiNCS
+/Au(111),  the Si goes to an atop site and binds to only one gold atom. 

The binding energy is 30.0 kcal/mol and the Si-Au bond length is 2.46 Å. As shown in Figure 6, 

the geometry of the ion is significantly distorted from its gas phase structure. Contrary to the 

SiNCS+/Au(111) system, in this case the ion is oriented parallel to the surface. In an F-SAM 

monolayer, the fluorinated alkanethiol chains would probably prevent the ion from binding to the 

gold surface in this form. On the other hand, the binding energy for an orientation in which the 

(CH3)2SiNCS
+ ion approaches the Au(111) surface perpendicularly, through an S atom attack, is 

very small (0.7 kcal/mol). Therefore, the probability for strong binding is negligible for this ion. 

 Using QTAIM,76-78 we calculated atomic charges (core electron densities were included) 

for the ions bound to the Au surface. As shown in Figure 6, the Si atom has, in both cases, the 

largest positive charge, 1.76 and 2.51 au for SiNCS+ and (CH3)2SiNCS
+, respectively. It is 

important to notice that the total charge on the small ion is quite large (+1.12 au), and 

significantly larger than that on the methylated ion (+0.62 au). This result may suggest that 

neutralization of these ions is very unlikely, especially for SiNCS+. To sum up, the results 

presented in this section open the possibility of an alternative mechanism that might also explain 

the experimental observations: deep penetration of the small, linear SiNCS+ ion, followed by 

strong binding to the Au(111) surface. Buried in the bottom of the monolayer, the SiNCS+ ion 

may be protected against the Xe+ collisions used for the sputtering analysis. 

 

Conclusions 
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We investigated the dynamics of collisions of silyl ions (SiNCS+ and (CH3)2SiNCS
+) 

with a perfluorinated alkanethiol self-assembled monolayer, as well as the long-time dynamics 

involved in the thermal desorption of these ions. The short-time collisions dynamics showed 

similar behavior for both ions. It is predicted that trapping is the most probable event when the 

incident angle is perpendicular to the surface. The trapping probability decreases substantially 

when the incident angle is 55º, especially for (CH3)2SiNCS
+ at 30 eV, for which 9.1% of the 

trajectories remained trapped during the 60 ps simulation time. Since soft landing was not 

experimentally observed under the latter conditions, our simulations may overestimate the 

trapping probabilities.  

The residence time of the SiNCS+ ion is always calculated to be significantly shorter than 

that of (CH3)2SiNCS
+. We suggest that the experimental observation that soft landing is only 

observed for the (CH3)2SiNCS
+ ion is a consequence of different time scales for desorption.  

Both ions experience soft landing, but for the smaller SiNCS+ ion the residence time is probably 

too short to be resolved in the experiment. The work reported here illustrates the capability of the 

BXD method for conducting simulations of dynamic processes occurring on time scales that are 

difficult to be investigated by brute force molecular dynamics techniques. 

The free energy for desorption of the methylated ion is calculated to be 2.4 kcal/mol 

higher than that of the parent ion. The free energy profiles predict minima around 15 Å, 

indicating a preference for the ions to be located on the top of the monolayer. The strongest 

attractive interactions between the ions and the F-SAM are found inside the monolayer (≈ 8 Å), 

and are predicted to be more important, by about 10 kcal/mol, for the methylated species, in 

agreement with Cooks’ conclusions.16 However, the entropic contribution to the free energy 

favors desorption, making it unfavorable the penetration of the ion into the monolayer. 
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DFT calculations of SiNCS+ and (CH3)2SiNCS
+ interacting with a Au(111) surface 

predict that the SiNCS+ ion can be strongly chemisorbed to the gold surface. The ion is 

positioned perpendicularly to the surface, in a hollow fcc site, forming bonds of 2.38 Å with the 

three nearest Au atoms. The calculated binding energy is 60 kcal/mol, that is, 10 kcal/mol higher 

than that estimated for the binding of alkanethiols on gold.38 The total charges calculated for 

SiNCS+ and (CH3)2SiNCS
+ (of +1.12 and +0.62 au, respectively) may suggest that neutralization 

of the ions is unlikely, especially for SiNCS+. Although the free energy profiles point out that 

deep penetration of the ions is difficult, the possibility for the small ion to approach the Au(111) 

surface and get chemisorbed should not be ruled out. If this occurred, the ion might not be 

sputtered during the Xe+ bombardment due to the protection of the perfluoroalkane chains.    
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Supporting Information Available  

Tables showing the parameters of the intramolecular potentials for the ions, vibrational 

frequencies of the ions, variation of percentages of trajectory types with hlimit for Ei = 10 eV and 

θi = 0º, energy transfer for Ei = 10 eV and θi = 0º, box-to-box rate coefficients, and figure 

showing the survival probability of ions in the F-SAM. This information is available free of 

charge via the Internet at http://pubs.acs.org. 
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Table 1. Percentages of trajectory types. 
 

 SiNCS+ (CH3)2SiNCS
+ 

 θi = 0 θi = 55 θi = 0 θi = 55 

Ei = 10 eV 

Direct scattering 7.1 15.8 5.5 13.1 

Physisorp. 3.4 57.8 2.5 51.0 

Direct-Penet. 76.2 4.3 71.4 3.8 

Phys-Penet. 13.3 22.1 20.6 32.1 

Trapped 80.4 15.7 86.2 27.1 

Ei = 30 eV 

Direct scattering 2.0 13.9 1.6 9.0 

Physisorp. 1.0 31.8 0.5 26.5 

Direct-Penet. 94.8 14.7 96.4 19.0 

Phys-Penet. 2.2 39.6 1.5 45.5 

Trapped 67.8 12.6 76.5 9.1 
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Figure 1: (a) Intramolecular terms that include switching functions. (b) Dissociation of methyl 

groups showing the equilibrium dissociation energies De,1 and De,2. 
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Figure 2: Schematic drawing showing the basis of the BXD method. 
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Figure 3: Schematic drawing showing the limiting height used to define penetrating trajectories. 

The values correspond to average heights of C and S atoms relative to the Au plane. 
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Figure 4: Cartoons showing (a) direct-penetration, (b) physisorption-penetration,  (c)  direct 

scattering, and (d) physisorption.  
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Figure 5: Free energy profiles for desorption of SiNCS+ (blue lines) and Me2SiNCS
+ (red lines) 

from F-SAM, with (dashed lines) and without (solid lines) inclusion of the charge image 

potential. 
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Figure 6: SiNCS+ and (CH3)2SiNCS
+ interacting with a Au(111) surface. The figures show the 

QTAIM charges as well as the distances between the Si atoms and the closest Au atoms. 
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Picture showing the (CH3)2SiNCS

+ ion trapped in the F-SAM. 
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Picture showing the (CH3)2SiNCS+ ion trapped in the F-SAM. 
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