187 research outputs found
Pion emission from the T2K replica target: method, results and application
The T2K long-baseline neutrino oscillation experiment in Japan needs precise
predictions of the initial neutrino flux. The highest precision can be reached
based on detailed measurements of hadron emission from the same target as used
by T2K exposed to a proton beam of the same kinetic energy of 30 GeV. The
corresponding data were recorded in 2007-2010 by the NA61/SHINE experiment at
the CERN SPS using a replica of the T2K graphite target. In this paper details
of the experiment, data taking, data analysis method and results from the 2007
pilot run are presented. Furthermore, the application of the NA61/SHINE
measurements to the predictions of the T2K initial neutrino flux is described
and discussed.Comment: updated version as published by NIM
Impact of castor meal on root-knot and free-living nematodes
Soil amendment may enhance soil quality as well as reduce plant-parasitic nematode. Despite the many applications already undertaken using castor meal, its efficiency in controlling root-knot nematodes (RKN, Meloidogyne incognita) when applied to melon (Cucumis melo) is still not clear. Three different amounts of castor meal (Ricinus communis) applied were evaluated in microplots planted with melon either with or without RKN. The impact of castor meal on soil free-living nematode communities was also determined. Total nematode genera richness was estimated as 37 for the entire set of microplots sampled across both sampling dates. Rarefaction analysis resulted in 12 collector's curves out of the total of 30 that reached the horizontal asymptote. Univariate ANOVA with two factors yielded differences (p < 0.05) only with regard to the time factor. Simpson, Shannon, Evenness and Equitability indices showed a trend toward moderate increases by the end of the experiment, while the other indices were higher for tomato in pre-transplant sampling compared to harvest. Nematode community and diversity changed during the course of the experiment, although there was substantial confounding heterogeneity within and between the factorial combinations from the beginning. Root knot population was not reduced by the castor meal but increased throughout the period, regardless of treatment. RKN reduced melon yield, number and weight of melon
Advancing brain barriers RNA sequencing: guidelines from experimental design to publication
Background: RNA sequencing (RNA-Seq) in its varied forms has become an indispensable tool for analyzing differential gene expression and thus characterization of specific tissues. Aiming to understand the brain barriers genetic signature, RNA seq has also been introduced in brain barriers research. This has led to availability of both, bulk and single-cell RNA-Seq datasets over the last few years. If appropriately performed, the RNA-Seq studies provide powerful datasets that allow for significant deepening of knowledge on the molecular mechanisms that establish the brain barriers. However, RNA-Seq studies comprise complex workflows that require to consider many options and variables before, during and after the proper sequencing process.Main body: In the current manuscript, we build on the interdisciplinary experience of the European PhD Training Network BtRAIN (https://www.btrain-2020.eu/) where bioinformaticians and brain barriers researchers collaborated to analyze and establish RNA-Seq datasets on vertebrate brain barriers. The obstacles BtRAIN has identified in this process have been integrated into the present manuscript. It provides guidelines along the entire workflow of brain barriers RNA-Seq studies starting from the overall experimental design to interpretation of results. Focusing on the vertebrate endothelial bloodâbrain barrier (BBB) and epithelial blood-cerebrospinal-fluid barrier (BCSFB) of the choroid plexus, we provide a step-by-step description of the workflow, highlighting the decisions to be made at each step of the workflow and explaining the strengths and weaknesses of individual choices made. Finally, we propose recommendations for accurate data interpretation and on the information to be included into a publication to ensure appropriate accessibility of the data and reproducibility of the observations by the scientific community.Conclusion: Next generation transcriptomic profiling of the brain barriers provides a novel resource for understanding the development, function and pathology of these barrier cells, which is essential for understanding CNS homeostasis and disease. Continuous advancement and sophistication of RNA-Seq will require interdisciplinary approaches between brain barrier researchers and bioinformaticians as successfully performed in BtRAIN. The present guidelines are built on the BtRAIN interdisciplinary experience and aim to facilitate collaboration of brain barriers researchers with bioinformaticians to advance RNA-Seq study design in the brain barriers community
Increased Genetic Vulnerability to Smoking at CHRNA5 in Early-Onset Smokers
Recent studies have shown an association between cigarettes per day (CPD) and a nonsynonymous single-nucleotide polymorphism in CHRNA5, rs16969968
A large-scale genome-wide association study meta-analysis of cannabis use disorder
Summary Background Variation in liability to cannabis use disorder has a strong genetic component (estimated twin and family heritability about 50â70%) and is associated with negative outcomes, including increased risk of psychopathology. The aim of the study was to conduct a large genome-wide association study (GWAS) to identify novel genetic variants associated with cannabis use disorder. Methods To conduct this GWAS meta-analysis of cannabis use disorder and identify associations with genetic loci, we used samples from the Psychiatric Genomics Consortium Substance Use Disorders working group, iPSYCH, and deCODE (20â916 case samples, 363â116 control samples in total), contrasting cannabis use disorder cases with controls. To examine the genetic overlap between cannabis use disorder and 22 traits of interest (chosen because of previously published phenotypic correlations [eg, psychiatric disorders] or hypothesised associations [eg, chronotype] with cannabis use disorder), we used linkage disequilibrium score regression to calculate genetic correlations. Findings We identified two genome-wide significant loci: a novel chromosome 7 locus (FOXP2, lead single-nucleotide polymorphism [SNP] rs7783012; odds ratio [OR] 1·11, 95% CI 1·07â1·15, p=1·84âĂâ10â9) and the previously identified chromosome 8 locus (near CHRNA2 and EPHX2, lead SNP rs4732724; OR 0·89, 95% CI 0·86â0·93, p=6·46âĂâ10â9). Cannabis use disorder and cannabis use were genetically correlated (rg 0·50, p=1·50âĂâ10â21), but they showed significantly different genetic correlations with 12 of the 22 traits we tested, suggesting at least partially different genetic underpinnings of cannabis use and cannabis use disorder. Cannabis use disorder was positively genetically correlated with other psychopathology, including ADHD, major depression, and schizophrenia. Interpretation These findings support the theory that cannabis use disorder has shared genetic liability with other psychopathology, and there is a distinction between genetic liability to cannabis use and cannabis use disorder. Funding National Institute of Mental Health; National Institute on Alcohol Abuse and Alcoholism; National Institute on Drug Abuse; Center for Genomics and Personalized Medicine and the Centre for Integrative Sequencing; The European Commission, Horizon 2020; National Institute of Child Health and Human Development; Health Research Council of New Zealand; National Institute on Aging; Wellcome Trust Case Control Consortium; UK Research and Innovation Medical Research Council (UKRI MRC); The Brain & Behavior Research Foundation; National Institute on Deafness and Other Communication Disorders; Substance Abuse and Mental Health Services Administration (SAMHSA); National Institute of Biomedical Imaging and Bioengineering; National Health and Medical Research Council (NHMRC) Australia; Tobacco-Related Disease Research Program of the University of California; Families for Borderline Personality Disorder Research (Beth and Rob Elliott) 2018 NARSAD Young Investigator Grant; The National Child Health Research Foundation (Cure Kids); The Canterbury Medical Research Foundation; The New Zealand Lottery Grants Board; The University of Otago; The Carney Centre for Pharmacogenomics; The James Hume Bequest Fund; National Institutes of Health: Genes, Environment and Health Initiative; National Institutes of Health; National Cancer Institute; The William T Grant Foundation; Australian Research Council; The Virginia Tobacco Settlement Foundation; The VISN 1 and VISN 4 Mental Illness Research, Education, and Clinical Centers of the US Department of Veterans Affairs; The 5th Framework Programme (FP-5) GenomEUtwin Project; The Lundbeck Foundation; NIH-funded Shared Instrumentation Grant S10RR025141; Clinical Translational Sciences Award grants; National Institute of Neurological Disorders and Stroke; National Heart, Lung, and Blood Institute; National Institute of General Medical Sciences.Peer reviewe
Stable Isotope Biogeochemistry of Seabird Guano Fertilization: Results from Growth Chamber Studies with Maize (Zea Mays)
Stable isotope analysis is being utilized with increasing regularity to examine a wide range of issues (diet, habitat use, migration) in ecology, geology, archaeology, and related disciplines. A crucial component to these studies is a thorough understanding of the range and causes of baseline isotopic variation, which is relatively poorly understood for nitrogen (ÎŽ(15)N). Animal excrement is known to impact plant ÎŽ(15)N values, but the effects of seabird guano have not been systematically studied from an agricultural or horticultural standpoint.This paper presents isotopic (ÎŽ(13)C and ÎŽ(15)N) and vital data for maize (Zea mays) fertilized with Peruvian seabird guano under controlled conditions. The level of (15)N enrichment in fertilized plants is very large, with ÎŽ(15)N values ranging between 25.5 and 44.7â° depending on the tissue and amount of fertilizer applied; comparatively, control plant ÎŽ(15)N values ranged between -0.3 and 5.7â°. Intraplant and temporal variability in ÎŽ(15)N values were large, particularly for the guano-fertilized plants, which can be attributed to changes in the availability of guano-derived N over time, and the reliance of stored vs. absorbed N. Plant ÎŽ(13)C values were not significantly impacted by guano fertilization. High concentrations of seabird guano inhibited maize germination and maize growth. Moreover, high levels of seabird guano greatly impacted the N metabolism of the plants, resulting in significantly higher tissue N content, particularly in the stalk.The results presented in this study demonstrate the very large impact of seabird guano on maize ÎŽ(15)N values. The use of seabird guano as a fertilizer can thus be traced using stable isotope analysis in food chemistry applications (certification of organic inputs). Furthermore, the fertilization of maize with seabird guano creates an isotopic signature very similar to a high-trophic level marine resource, which must be considered when interpreting isotopic data from archaeological material
Shared genetic risk between eating disorder- and substance-use-related phenotypes:Evidence from genome-wide association studies
First published: 16 February 202
A large-scale genome-wide association study meta-analysis of cannabis use disorder
Background: Variation in liability to cannabis use disorder has a strong genetic component (estimated twin and family heritability about 50-70%) and is associated with negative outcomes, including increased risk of psychopathology. The aim of the study was to conduct a large genome-wide association study (GWAS) to identify novel genetic variants associated with cannabis use disorder.
Methods: To conduct this GWAS meta-analysis of cannabis use disorder and identify associations with genetic loci, we used samples from the Psychiatric Genomics Consortium Substance Use Disorders working group, iPSYCH, and deCODE (20 916 case samples, 363 116 control samples in total), contrasting cannabis use disorder cases with controls. To examine the genetic overlap between cannabis use disorder and 22 traits of interest (chosen because of previously published phenotypic correlations [eg, psychiatric disorders] or hypothesised associations [eg, chronotype] with cannabis use disorder), we used linkage disequilibrium score regression to calculate genetic correlations.
Findings: We identified two genome-wide significant loci: a novel chromosome 7 locus (FOXP2, lead single-nucleotide polymorphism [SNP] rs7783012; odds ratio [OR] 1·11, 95% CI 1·07-1·15, p=1·84 à 10-9) and the previously identified chromosome 8 locus (near CHRNA2 and EPHX2, lead SNP rs4732724; OR 0·89, 95% CI 0·86-0·93, p=6·46 à 10-9). Cannabis use disorder and cannabis use were genetically correlated (rg 0·50, p=1·50 à 10-21), but they showed significantly different genetic correlations with 12 of the 22 traits we tested, suggesting at least partially different genetic underpinnings of cannabis use and cannabis use disorder. Cannabis use disorder was positively genetically correlated with other psychopathology, including ADHD, major depression, and schizophrenia.
Interpretation: These findings support the theory that cannabis use disorder has shared genetic liability with other psychopathology, and there is a distinction between genetic liability to cannabis use and cannabis use disorder
- âŠ