3,866 research outputs found

    Inclusive Fitness, Reciprocal Altruism and Emotion: Testing a Social-Functional Model of Anger and Gratitude Across Kin and Non-Kin Relationships

    Get PDF
    Guided by the theories of inclusive fitness (Hamilton, 1964) and reciprocal altruism (Trivers, 1971), two studies tested hypotheses related to the notion that emotions are part of an evolved psychological system that functions, in part, to regulate social exchange. Emotional experience and exchange behaviors were predicted to vary based on both the structure of the situation and the type of relationship one has with a partner. Due to an absence of inclusive fitness effects, interaction with non-kin (compared with kin) exchange partners was expected to trigger more intense emotional responses. Study 1 found that, as expected, unfair offers led to feelings of anger, but more so for non-kin partners compared to kin partners. Similarly, fair offers led to feelings of gratitude, but more so for non-kin partners. Study 2 used a 3 (emotion induction: anger, gratitude, control) by 4 (relationship partner: stranger, friend, cousin, sibling) by 2 (social dilemma task: take-some, give-some) experimental design and found evidence in support of the prediction that emotions are more likely to influence exchange behaviors with non-kin partners compared with kin partners. This research extends the social-functional approach to emotions into the context of evolutionary social psychological theory

    An Overview of Two Incidents Involving African American Fraternities at Indiana University

    Get PDF
    The current campus climate facing African American Greek fraternal organizations at Indiana University (IU) can be examined through critical incidents of the past. A historical analysis of data sources associated with two incidents involving these organizations at IU provides a better understanding of the challenges students in these organizations may face. This paper aims to provide practitioners with an understanding of how specific policy changes for these fraternities may affect their members, as well as the student body they serve

    Graviton Emission in the Bulk from a Higher-Dimensional Schwarzschild Black Hole

    Get PDF
    We consider the evaporation of (4+n)-dimensional non-rotating black holes into gravitons. We calculate the energy emission rate for gravitons in the bulk obtaining analytical solutions of the master equation satisfied by all three types (S,V,T) of gravitational perturbations. Our results, valid in the low-energy regime, show a vector radiation dominance for every value of n, while the relative magnitude of the energy emission rate of the subdominant scalar and tensor radiation depends on n. The low-energy emission rate in the bulk for gravitons is well below that for a scalar field, due to the absence of the dominant l=0,1 modes from the gravitational spectrum. Higher partial waves though may modify this behaviour at higher energies. The calculated low-energy emission rate, for all types of degrees of freedom decreases with n, although the full energy emission rate, integrated over all frequencies, is expected to increase with n, as in the previously studied case of a bulk scalar field.Comment: 17 pages, 2 figures, minor corrections, accepted by Phys. Lett.

    Response to comment on "Human-specific gain of function in a developmental enhancer"

    Get PDF
    Duret and Galtier argue that human-specific sequence divergence and gain of function in the HACNS1 enhancer result from deleterious biased gene conversion (BGC) with no contribution from positive selection. We reinforce our previous conclusion by analyzing hypothesized BGC events genomewide and assessing the effect of recombination rates on human-accelerated conserved noncoding sequence ascertainment. We also provide evidence that AT → GC substitution bias can coexist with positive selection

    The White Dwarf Population in NGC 1039 (M34) and the White Dwarf Initial-Final Mass Relation

    Get PDF
    We present the first detailed photometric and spectroscopic study of the white dwarfs (WDs) in the field of the ~225 Myr old (log tau_cl = 8.35) open cluster NGC 1039 (M34) as part of the ongoing Lick-Arizona White Dwarf Survey. Using wide-field UBV imaging, we photometrically select 44 WD candidates in this field. We spectroscopically identify 19 of these objects as WDs; 17 are hydrogen-atmosphere DA WDs, one is a helium-atmosphere DB WD, and one is a cool DC WD that exhibits no detectable absorption lines. We find an effective temperature (T_eff) and surface gravity (log g) for each DA WD by fitting Balmer-line profiles from model atmospheres to the observed spectra. WD evolutionary models are then invoked to derive masses and cooling times for each DA WD. Of the 17 DAs, five are at the approximate distance modulus of the cluster. Another WD with a distance modulus 0.45 mag brighter than that of the cluster could be a double-degenerate binary cluster member, but is more likely to be a field WD. We place the five single cluster member WDs in the empirical initial-final mass relation and find that three of them lie very close to the previously derived linear relation; two have WD masses significantly below the relation. These outliers may have experienced some sort of enhanced mass loss or binary evolution; however, it is quite possible that these WDs are simply interlopers from the field WD population. Eight of the 17 DA WDs show significant CaII K absorption; comparison of the absorption strength with the WD distances suggests that the absorption is interstellar, though this cannot be confirmed with the current data.Comment: 24 pages, 13 figures. Accepted for publication in the Astronomical Journal. Figures 1, 2 and 3 reduced in resolutio

    Non-monotonicity of the frictional bimaterial effect

    Full text link
    Sliding along frictional interfaces separating dissimilar elastic materials is qualitatively different from sliding along interfaces separating identical materials due to the existence of an elastodynamic coupling between interfacial slip and normal stress perturbations in the former case. This bimaterial coupling has important implications for the dynamics of frictional interfaces, including their stability and rupture propagation along them. We show that while this bimaterial coupling is a monotonically increasing function of the bimaterial contrast, when it is coupled to interfacial shear stress perturbations through a friction law, various physical quantities exhibit a non-monotonic dependence on the bimaterial contrast. In particular, we show that for a regularized Coulomb friction, the maximal growth rate of unstable interfacial perturbations of homogeneous sliding is a non-monotonic function of the bimaterial contrast, and provide analytic insight into the origin of this non-monotonicity. We further show that for velocity-strengthening rate-and-state friction, the maximal growth rate of unstable interfacial perturbations of homogeneous sliding is also a non-monotonic function of the bimaterial contrast. Results from simulations of dynamic rupture along a bimaterial interface with slip-weakening friction provide evidence that the theoretically predicted non-monotonicity persists in non-steady, transient frictional dynamics.Comment: 14 pages, 5 figure

    Signatures of accretion events in the halos of early-type galaxies from comparing PNe and GCs kinematics

    Full text link
    We have compared the halo kinematics traced by globular clusters (GCs) and planetary nebulae (PNe) for two elliptical galaxies in the Fornax and Virgo clusters NGC 1399 and NGC 4649, and for the merger remnant NGC 5128 (Centaurus A). We find differences in the rotational properties of the PN, red GC, and blue GC systems in all these three galaxies. NGC 1399 PNe and GCs show line of sight velocity distributions in specific regions that are significantly different, based on Kolmogorov-Smirnov tests. The PN system shows multi-spin components, with nearly opposite direction of rotation in the inner and the outer parts. The GCs velocity field is not point-symmetric in the outer regions of the galaxy, indicating that the system has not reached dynamical equilibrium yet. In NGC 4649 PNe, red and blue GCs have different rotation axes and rotational velocities. Finally, in NGC 5128 both PNe and GCs deviate from equilibrium in the outer regions of the galaxy, and in the inner regions the PN system is rotationally supported, whereas the GC system is dominated by velocity dispersion. The observed different kinematic properties, including deviations from point-symmetry, between PNe and GCs suggest that these systems are accreted at different times by the host galaxy, and the most recent accretion took place only few Gyr ago.We discuss two scenarios which may explain some of these differences: i) tidal stripping of loosely-bound GCs, and ii) multiple accretion of low luminosity and dwarf galaxies. Because these two mechanisms affect mostly the GC system, differences with the PNe kinematics can be expected.Comment: 14 pages, 13 figures, Accepted for publication in MNRAS. This new version contains an improved analysis, which includes the study of point-symmetry in the velocity fields and its implications for dynamical equilibriu

    The Asymptotic Number of Attractors in the Random Map Model

    Get PDF
    The random map model is a deterministic dynamical system in a finite phase space with n points. The map that establishes the dynamics of the system is constructed by randomly choosing, for every point, another one as being its image. We derive here explicit formulas for the statistical distribution of the number of attractors in the system. As in related results, the number of operations involved by our formulas increases exponentially with n; therefore, they are not directly applicable to study the behavior of systems where n is large. However, our formulas lend themselves to derive useful asymptotic expressions, as we show.Comment: 16 pages, 1 figure. Minor changes. To be published in Journal of Physics A: Mathematical and Genera

    Effective equidistribution and the Sato-Tate law for families of elliptic curves

    Get PDF
    Extending recent work of others, we provide effective bounds on the family of all elliptic curves and one-parameter families of elliptic curves modulo p (for p prime tending to infinity) obeying the Sato-Tate Law. We present two methods of proof. Both use the framework of Murty-Sinha; the first involves only knowledge of the moments of the Fourier coefficients of the L-functions and combinatorics, and saves a logarithm, while the second requires a Sato-Tate law. Our purpose is to illustrate how the caliber of the result depends on the error terms of the inputs and what combinatorics must be done.Comment: Version 1.1, 24 pages: corrected the interpretation of Birch's moment calculations, added to the literature review of previous results

    Galactic orbital motions in the Dark Matter, MOdified Newtonian Dynamics and MOdified Gravity scenarios

    Full text link
    We simultaneously integrate in a numerical way the equations of motion of both the Magellanic Clouds (MCs) in MOND, MOG and CDM for -1 <= t <= +1 Gyr to see if, at least in principle, it is possible to discriminate between them (Abridged version).Comment: LaTex2e, 11 pages, 2 tables, 8 figures. Issues concerning the masses of MCs clarified. Integration time changed to -1 Gyr <= t <= +1 Gyr. To appear in Monthly Notices of the Royal Astronomical Society (MNRAS
    • …
    corecore