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1. Introduction

Recently M. Ram Murty and K. Sinha [MS] proved effective equidistribution results showing the
eigenvalues of Hecke operators on the space S(N,k) of cusp forms of weight k and level N agree with
the Sato–Tate distribution. Our goal here is to use their framework to prove similar results for families
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of elliptic curves. We shall do this for the family of all elliptic curves and for one-parameter families
of elliptic curves.

We first review notation and previous results. Let E: y2 = x3 + Ax + B with A, B ∈ Z be an elliptic
curve over Q with associated L-function

L(E, s) =
∞∑

n=1

aE(n)

ns
=

∏
p

(
1 − aE(p)

ps
+ χ0(p)

p2s−1

)−1

, (1.1)

where � = −16(4A3 + 27B2) is the discriminant of E , χ0 is the principal character modulo �, and

aE(p) = p − #
{
(x, y) ∈ (Z/pZ)2: y2 ≡ x3 + Ax + B mod p

}
= −

∑
x mod p

(
x3 + Ax + B

p

)
. (1.2)

By Hasse’s bound we know |aE(p)| � 2
√

p, so we may write aE (p) = 2
√

p cos θE (p), where we may
choose θE (p) ∈ [0,π ]. See [Sil1,Sil2,ST] for more details and proofs of all the needed properties of
elliptic curves.

How the aE (p)’s vary is of great interest. One reason for this is that they encode local data (the
number of solutions modulo p), and are then combined to build the L-function, whose properties give
global information about E . For example, the Birch and Swinnerton-Dyer conjecture [BS-D1,BS-D2]
states the order of the group of rational solutions of E equals the order of vanishing of L(E, s) at
the central point. While we are far from being able to prove this, the evidence for the conjecture is
compelling, especially in the case of complex multiplication and rank at most 1 [Bro,CW,GKZ,GZ,Kol1,
Kol2,Ru]. In addition there is much suggestive numerical evidence for the conjecture; for example, for
elliptic curves with modest geometric rank r, numerical approximations of the first r − 1 Taylor coef-
ficients are consistent with these coefficients vanishing (see for instance the families studied in [Fe1,
Fe2,Mil3]).

If E has complex multiplication1 then aE (p) = 0 for half the primes; i.e., θE (p) = π/2. The remain-
ing angles θE (p) are uniformly distributed in [0,π ] (this follows from [Deu,He1,He2]).

If E does not have complex multiplication, which is the case for most elliptic curves, then Sato
and Tate [Ta] conjectured that as we vary p, the distribution of the θE (p)’s converges to 2 sin2 θ dθ/π .
More precisely, for any interval I ⊂ [0,π ] we have

lim
x→∞

#{p: p � x: θE(p) ∈ I}
#{p: p � x} =

∫
I

2 sin2 θ dθ

π
; (1.3)

we call 2 sin2 θ dθ/π the Sato–Tate measure, and denote it by μST. By recent results of Clozel, Harris,
Shepherd-Barron and Taylor [CHT,HS-BT,Tay], this is now known for all such E that have multiplicative
reduction at some prime; see also [BZ] for results on the error terms when |I| is small (these results
are not for an individual curve, but rather averaged over the family of all elliptic curves) and [B-LGG,
B-LGHT] for generalizations to other families of L-functions.

Instead of fixing an elliptic curve and letting the prime vary, we can instead fix a prime p and
study the distribution of θE (p) as we vary E . Before describing our results, we briefly summarize
related results in the literature concerning Sato–Tate behavior in families. Serre [Ser] considered a
similar question, not for elliptic curves, but rather for S(N,k), the space of cusp forms of weight k

1 This means the endomorphism ring is larger than the integers. For example, y2 = x3 − x has complex multiplication, as can
be seen by sending (x, y) → (−x, iy). Note aE (p) = 0 if p ≡ 3 mod 4 (this can be seen from the definition of aE (p) as a sum of
Legendre symbols, sending x → −x).
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on Γ0(N). He proved that for even k with N + k → ∞ the eigenvalues of the normalized pth Hecke
operators are equidistributed in [−2,2] with respect to the measure

μp = p + 1

π

√
1 − x2/4 dx

(p1/2 + p−1/2)2 − x2
; (1.4)

changing variables by setting x = 2 cos θ this is equivalent to the measure μ̃p on [0,π ] given by

μ̃p = 2(p + 1)

π

sin2 θ dθ

(p1/2 + p−1/2)2 − 4 cos2 θ
. (1.5)

Note that as p → ∞, μ̃p → μST; for p large these two measures assign almost the same probability
to an interval I , differing by O (1/p). See [CDF,Sar] for other families with a similar distribution.

Serre’s theorem was ineffective, and has recently been improved by M.R. Murty and K. Sinha [MS].
They show that if {an(p)/p(k−1)/2}1�i�#S(N,k) denote the normalized eigenvalues of the Hecke opera-
tor T p on S(N,k), then

#{1 � n � N: an(p)/p(k−1)/2 ∈ I}
#S(N,k)

=
∫
I

μp + O

(
log p

log kN

)
, (1.6)

where #S(N,k) is the number of cusp forms of weight k and level N , and if N � 61 then by Corol-
lary 15 of [MS] we have

3ψ(N)

200
� #S(N,k) � ψ(N)

12
+ 1, (1.7)

where ψ(N) = N
∏

p|N(1 + 1
p ). This effective version of equidistribution allows Murty and Sinha to

derive many results, such as

• an effectively computable constant Bd such that if J0(N) (the Jacobian of the modular curve
X0(N)) is isogenous to a product of Q-simple abelian varieties of dimensions at most d, then
N � Bd;

• the multiplicity of any given eigenvalue of the Hecke operators is 	 s(N,k) log p
log kN .

The purpose of this paper is to expand the techniques in [MS] to families of elliptic curves. Un-
like [MS,Ser], we cannot keep the prime fixed throughout the argument, as there are only finitely
many distinct reductions of elliptic curves modulo p. Instead we fix a prime and study the an-
gles θE (p) for one of the two families below, and then send p → ∞. We study:

(1) The family of all elliptic curves modulo p for p � 5. We may write these curves in Weierstrass
form as y2 = x3 − ax − b with a,b ∈ Z/pZ and 4a3 
= 27b2. The number of pairs (a,b) satisfying
these conditions2 is p(p − 1).

(2) One-parameter families over Q(T ): let A(T ), B(T ) ∈ Z[T ] and consider the family y2 = x3 +
A(T )x + B(T ) with non-constant j(T ).3 We specialize T to be a t ∈ Z/pZ. The cardinality of
the family is p + O A,B(1) (we lose a few values when we specialize as we require the reduced
curves to be elliptic curves modulo p), where the error is a function of the discriminant of the
family.

2 If a = 0 then the only b which is eliminated is b = 0. If a is a non-zero perfect square there are two b that fail, while if a
is not a square than no b fail. Thus the number of bad pairs of (a,b) is p.

3 Up to constants, j(T ) is A(T )3/(4A(T )3 + 27B(T )2).
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Notations.

• We let F p denote either family, and write V p for its cardinality (which is p(p − 1) in the first
case and p + O (1) in the second).

• While we may denote the angles by θE (p), θa,b(p) or θt(p), as p is fixed for notational conve-
nience and to unify the presentation we shall denote these by θn , with 1 � n � V p .

• We let e(x) = e2π ix.

Normalizations.

• For the family of all elliptic curves, we may match the elliptic curves in pairs (E, E ′) such that
θE ′ (p) = π − θE (p) (and each curve is in exactly one pair); see Remark 1.1 for a proof. Thus,
if we let xn = θn(p)/π , we see that the set {2xn}n�V p is symmetric about π . This will be very
important later, as it means

∑
n�V p

sin(2πmxn) = 0 for any integer m.
• For a one-parameter family of elliptic curves, in general we cannot match the elliptic curves in

pairs, and thus the set {2θt(p)} is not typically symmetric about π ; see Remark 1.2 for some
results about biases in the θt(p)’s. This leads to some complications in proving equidistribution,
as certain sine terms no longer vanish. To overcome this, following other researchers we consider
the technically easier situation where for each elliptic curve we include both θt(p) and 2π −θt(p).
To unify the presentation, instead of normalizing these angles by dividing by 2π (to obtain a
distribution supported on [0,1]), we first study the angles modulo π and then divide by π . We
thus consider the normalized angles xt = θt(p)/π and xt+V p = 1 − θt(p)/π for 1 � t � V p . Thus
we study 2V p normalized angles in [0,1], unlike the case of all elliptic curves where we had V p

angles.
• We set Ṽ p = V p for the family of all elliptic curves, and 2V p for a one-parameter family of elliptic

curves. We study the distribution of the normalized angles {xn}1�n�Ṽ p
.

Remark 1.1. To see that we may match the angles as claimed for the family of all elliptic curves,
consider the elliptic curve y2 = x3 − ax − b with 4a3 
= 27b2. Let c be any non-residue modulo p, and
consider the curve y2 = x3 − ac2x − bc3. Using the Legendre sum expressions for aE(p) and aE ′ (p),
using the automorphism x → cx we see the second equals

(c
p

)
times the first; as we have chosen c to

be a non-residue, this means 2
√

p cos(θE ′ (p)) = −2
√

p cos(θE (p)), or θE ′ (p) = π − θE (p) as claimed.

Remark 1.2. If the one-parameter family of elliptic curves has rank r over Q(T ) and satisfies Tate’s
conjecture (see [Ta,RS]), then Rosen and Silverman [RS] prove a conjecture of Nagao [Na], which states

lim
X→∞− 1

X

∑
p�X

A1(p) log p

p
= r (1.8)

where A1(p) := ∑
t mod p at(p). Tate’s conjecture is known for rational surfaces.4 This bias has been

used by S. Arms, Á. Lozano-Robledo and S.J. Miller [AL-RM] to construct one-parameter families with
moderate rank by finding families where A(p) is essentially −rp. As there are about p curves mod-
ulo p, this represents a bias of about −r on average per curve; as each at(p) is of order

√
p, we see

in the limit that this bias should be quite small per curve (though significant enough to lead to rank,
it gives a lower order contribution to the distribution for each prime, and will be dwarfed by our
other errors).

4 An elliptic surface y2 = x3 + A(T )x + B(T ) is rational if and only if one of the following is true: (1) 0 < max{3 deg A,

2 deg B} < 12; (2) 3 deg A = 2 deg B = 12 and ordt=0 t12�(t−1) = 0.
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Our goal is to prove effective theorems on the rate of convergence as p → ∞ to the Sato–Tate
measure, which requires us to obtain effective estimates for∣∣#{n � Ṽ p: θn ∈ I} − μST(I)Ṽ p

∣∣. (1.9)

Here μST is the Sato–Tate measure on [0,π ] given by

μST(T ) =
∫
I

2

π
sin2 t dt, I ⊂ [0,π ], (1.10)

and for n � V p , 2
√

p cos(θn) is the number of solutions modulo p of the elliptic curve En: y2 =
x3 + anx + bn . Equivalently, using the normalization xn = θn/π to obtain a distribution on [0,1], the
Sato–Tate measure become

μst(I) =
∫
I

2 sin2(πx)dx, I ⊂ [0,1]. (1.11)

For a sequence of numbers xn modulo 1, a measure μ and an interval I ⊂ [0,1], let

NI (Ṽ p) = #{n � Ṽ p: xn ∈ I},
μ(I) =

∫
I

μ(t)dt. (1.12)

The discrepancy D I,Ṽ p
(μ) is

D I,Ṽ p
(μ) = ∣∣NI (Ṽ p) − Ṽ pμ(I)

∣∣, (1.13)

and trivially D I,Ṽ p
(μ) � Ṽ p . The goal is to obtain the best possible estimate for how rapidly

D I,Ṽ p
(μ)/Ṽ p tends to 0.

Previous work has obtained a power savings in convergence to Sato–Tate for two-parameter fam-
ilies of elliptic curves (such as the entire family of all elliptic curves, or parametrizations such as
y2 = x3 + f (a)x + g(b) with a and b varying in appropriate ranges); see the papers by Banks and
Shparlinski [BS,Sh1,Sh2] for saving Ṽ 1/4

p in Sato–Tate convergence. The key step in these arguments is

1

(p − 1)2

∑
a,b mod p

4a3+27b2 
≡0 mod p

sin((k + 1)θa,b(p))

sin(θa,b(p))
	 kp−1/2, k = 1,2, . . . ; (1.14)

see Theorem 13.5.3 from [Ka] for a proof. One can obtain new and similar results for one-parameter
families of elliptic curves by appealing to a result of Michel [Mic], which we do in Section 4. Our
main results are the following.

Theorem 1.3 (Family of all curves). For the family of all elliptic curves modulo p, as p → ∞ we have

D I,Ṽ p
(μst) � C

Ṽ p

log Ṽ p
(1.15)

for some computable C . Note that in this family, Ṽ p = V p and for each curve we include one normalized angle,
xn = θn/π ∈ [0,1].
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Theorem 1.4 (One-parameter family of elliptic curves). For a one-parameter family of elliptic curves over Q(T )

with non-constant j-invariant, we have

D I,Ṽ p
(μst) � C Ṽ 3/4

p (1.16)

for some computable C . Note that in this family, Ṽ p = 2V p and for each curve we include two normalized
angles, xn = θn/π and xn+V p = 1 − θn/π , with θn ∈ [0,π ].

Stronger results than Theorem 1.3 are known; as remarked above, convergence to Sato–Tate with
an error of size Ṽ 3/4

p instead of Ṽ p/ log Ṽ p is obtained in [BS,Sh1,Sh2]. We present these weaker
arguments to highlight how one may attack these problems possessing only knowledge of the mo-
ments, and not the functions of the angles, in the hope that these arguments might be of use to
other researchers attacking similar questions where we only have formulas for the moments of the
coefficients. We will thus illustrate the effectiveness (in both senses of the word) of the techniques
in [MS], as well as illustrate the loss of information that comes from having to trivially bound certain
combinatorial sums. As we have not found similar effective results in the literature for one-parameter
families, in order to get the best possible results we do not use formulas for the moments but rather
estimates for the analogue of (1.14). It is worth remarking that we can recover the results of [BS,
Sh1,Sh2] by our generalization of [MS] provided we also use (1.14) (see [Ka]) instead of results from
Birch [Bi] on moments; this shows the value of the formulation in [MS].

We summarize the key ingredients of the proofs, and discuss why the second result has a
much better error term than the first. Similar to [MS], both theorems follow from an analysis of∑

n�Ṽ p
e(mxn) (we use xn = θn/π in order to have a distribution supported on [0,1]). For the family

of all elliptic curves, after some algebra we see this is equivalent to understanding
∑

n�Ṽ p
cos(2mθn);

using a combinatorial identity (see [Mil4]) this is equivalent to a linear combination of sums of the
form

∑
n�Ṽ p

(cos θn)2r . These sums are essentially the 2rth moments of the Fourier coefficients of the
family of all elliptic curves modulo p. Birch [Bi] evaluated these, and showed the answers are the
Catalan numbers5 plus lower order terms. Our equidistribution result then follows from a combina-
torial identity of a sum of weighted Catalan numbers; our error term is poor due to the necessity of
losing cancellation in bounding the contribution from the sums of the error terms.

The proof of Theorem 1.4 is easier, as now instead of inputting results on the moments we instead
use a result of Michel [Mic] for the sum over the family of symk(θn) = sin((k + 1)θn)/ sin θn . This is
easily related to our quantity of interest, cos(2mθn), through identities of Chebyshev polynomials:

cos(2mθn) = 1

2
sym2m(θn) − 1

2
sym2m−2(θn). (1.17)

The advantage of having a formula for the quantity we want and not a related quantity is that we
avoid trivially estimating the errors in the combinatorial sums. These calculations increased the size
of the error significantly, and this is why Theorem 1.4 is stronger than Theorem 1.3, though the
error term in Theorem 1.3 is comparable to the error terms of the equivalent quantities in [MS] for
the family of cuspidal newforms. Michel proves his result by using a cohomological interpretation,
and this results in the error term being p−1/2 smaller than the main term; it is this savings in the
quantity we are directly interested in that leads to the superior error estimates.

The paper is organized as follows. After reviewing the needed results from Murty and Sinha [MS]
in Section 2, we prove Theorem 1.3 in Section 3 and Theorem 1.4 in Section 4. For completeness the
needed combinatorial identities are proved in Appendix A, and in Appendix B we correct some errors
in explicit formulas for moments in Birch’s paper [Bi] (where he neglected to mention that his sums
are normalized by dividing by p − 1).

5 The Catalan numbers are the moments of the semi-circle distribution, which is related to the Sato–Tate distribution through
a simple change of variables.
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2. Effective equidistribution preliminaries

We quickly review some needed results from Murty and Sinha [MS]; while our setting is similar
to the problems they investigated, there are slight differences which require generalizations of some
of their results. Assume μ = F (−x)dx with

F (x) =
∞∑

m=−∞
cme(mx) (2.1)

where e(z) = exp(2π iz). Theorem 8 from [MS] is

Theorem 2.1. Let {xn} be a sequence of real numbers in [0,1] and let the notation be as above. Assume for
each m that

lim
Ṽ p→∞

1

Ṽ p

∑
n�Ṽ p

e(mxn) = cm and
∞∑

m=−∞
|cm| < ∞. (2.2)

Let ‖μ‖ = supx∈[0,1]|F (x)| with μ = F (−x)dx. Then the discrepancy satisfies

D I,Ṽ p
(μ) � Ṽ p‖μ‖

M + 1
+

∑
1�m�M

(
1

M + 1
+ min

(
b − a,

1

π |m|
))∣∣∣∣∣

Ṽ p∑
n=1

e(mxn) − Ṽ pcm

∣∣∣∣∣ (2.3)

for any natural numbers Ṽ p and M.

Unfortunately, Theorem 2.1 is not directly applicable in our case. The reason is that there we have
a limit as Ṽ p → ∞ in the definition of the cm , where for us we fix a prime p and have Ṽ p = p(p − 1)

for the family of all elliptic curves modulo p, or p + O (1) for a one-parameter family. Analyzing the
proof of Theorem 8 from [MS], however, we see that the claim holds for any sequence cm (obviously
if Ṽ −1

p
∑

n�Ṽ p
e(mxn) is not close to cm then the discrepancy is large). We thus obtain

Theorem 2.2. Let {xn} be a sequence of real numbers in [0,1] and let the notation be as above. Let {cm} be a
sequence of numbers such that

∑∞
m=−∞ |cm| < ∞ (we will take c0 = 1, c±1 = −1/2 and all other cm’s equal

to zero). Let ‖μ‖ = supx∈[0,1]|F (x)| with μ = F (−x)dx. Then the discrepancy satisfies

D I,Ṽ p
(μ) � Ṽ p‖μ‖

M + 1
+

∑
1�m�M

(
1

M + 1
+ min

(
b − a,

1

π |m|
))∣∣∣∣∣

Ṽ p∑
n=1

e(mxn) − Ṽ pcm

∣∣∣∣∣ (2.4)

for any natural numbers Ṽ p and M.

To simplify applying the results from [MS], we study the normalized angles xn . Under our normal-
ization, the Sato–Tate measure becomes

μst(I) =
∫
I

2 sin2(πx)dx, I ⊂ [0,1]. (2.5)

The Fourier coefficients of μst are readily calculated.
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Lemma 2.3. Let μst = F (−x)dx be the normalized Sato–Tate distribution on [0,1] with density 2 sin2(πx).
We have

F (x) = 1 − 1

2

(
e(x) + e(−x)

)
, (2.6)

which implies that the Fourier coefficients are c0 = 1, c±1 = −1/2 and cm = 0 for |m| � 2.

Proof. The proof is immediate from the expansion of F as a sum of exponentials, which follows from
the identities cos(2θ) = 1 − 2 sin2(θ) and e(θ) = cos(2πθ) + i sin(2πθ). �
3. Proof of effective equidistribution for all curves

We use Birch’s [Bi] results on the moments of the family of all elliptic curves modulo p (there are
some typos in his explicit formulas; we correct these in Appendix B); unfortunately, these are results
for quantities such as (2

√
p cos θn)2R , and the quantity which naturally arises in our investigation

is e(mxn) (with xn running over the normalized angles θa,b(p)/π ), specifically

∣∣∣∣∣
Ṽ p∑

n=1

e(mxn) − Ṽ pcm

∣∣∣∣∣. (3.1)

By applying some combinatorial identities we are able to rewrite our sum in terms of the moments,
which allows us to use Birch’s results. The point of this section is not to obtain the best possible error
term (which following [BS,Sh1,Sh2] could be obtained by replacing Birch’s bounds with (1.14)) but
rather to highlight how one may generalize and apply the framework from [MS].

We first set some notation. Let σk(T p) denote the trace of the Hecke operator T p acting on the
space of cusp forms of dimension −2k on the full modular group. We have σk+1(T p) = O (pk+c+ε),
where from [Sel] we see we may take c = 3/4 (there is no need to use the optimal c, as our final
result, namely (3.17), will yield the same order of magnitude result for c = 3/4 or c = 0). Let M p(2R)

denote the 2Rth moment of 2 cos(θn) = 2 cos(πxn) (as we are concerned with the normalized values,
we use slightly different notation than in [Bi]):

M p(2R) = 1

Ṽ p

Ṽ p∑
n=1

(
2 cos(πxn)

)2R
. (3.2)

Lemma 3.1 (Birch). Notation as above, we have

M p(2R) = 1

R + 1

(
2R

R

)
+ O

(
22R Ṽ

− 1−c−ε
2

p
); (3.3)

we may take c = 3/4 and thus there is a power saving.6

Proof. The result follows from dividing the equation for S∗
R(p) on the bottom of p. 59 of [Bi] by pR ,

as we are looking at the moments of the normalized Fourier coefficients of the elliptic curves, and

6 Note 1
R+1

(2R
R

)
is the Rth Catalan number. The Catalan numbers are the moments of the semi-circle distribution, which is

related to the Sato–Tate distribution by a simple change of variables.
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then using the bound σk+1(T p) = O (pk+c+ε), with c = 3/4 admissible by [Sel]. Recall Ṽ p = p(p − 1)

is the cardinality of the family. We have

M p(2R) = 1

R + 1

(
2R

R

)
p(p − 1)

Ṽ p
+ O

(
R∑

k=1

2k + 1

R + k + 1

(
2R

R + k

)
p1+c+ε

Ṽ p
+ p

pR Ṽ p

)

= 1

R + 1

(
2R

R

)
+ O

(
22R Ṽ

− 1−c−ε
2

p
)

(3.4)

since Ṽ p = p(p − 1). �
A simple argument (see Remark 1.1) shows that the normalized angles are symmetric about 1/2.

This implies

Ṽ p∑
n=1

e(mxn) =
Ṽ p∑

n=1

cos(2πmxn) + i

Ṽ p∑
n=1

sin(2πmxn) =
Ṽ p∑

n=1

cos(2mθn), (3.5)

where the sine piece does not contribute as the angles are symmetric about 1/2, and we are denoting
the Ṽ p non-normalized angles by θn .

Thus it suffices to show we have a power saving in

∣∣∣∣∣
Ṽ p∑

n=1

cos(2mθn) − Ṽ pcm

∣∣∣∣∣. (3.6)

By symmetry, it suffices to consider m � 0.

Lemma 3.2. Let c0 = 1, c±1 = −1/2 and cm = 0 otherwise. There is some c < 1 such that

∣∣∣∣∣
Ṽ p∑

n=1

cos(2mθn) − Ṽ pcm

∣∣∣∣∣ 	 (
m223m Ṽ

− 1−c−ε
2

p
); (3.7)

by the work of Selberg [Sel] we may take c = 3/4.

Proof. The case m = 0 is trivial. For m = 1 we use the trigonometric identity cos(2θn) = 2 cos2(θn)−1.
As c±1 = −1/2 we have

Ṽ p∑
n=1

cos(2θn) − Ṽ p

2
=

Ṽ p∑
n=1

[(
2 cos2 θn − 1

) + 1

2

]

= 1

2

Ṽ p∑
n=1

(
(2 cos θn)

2 − 1
)

= 1

2

Ṽ p∑(
(2

√
p cos θn)

2

p
− 1

)
. (3.8)
n=1
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Note the sum of (2
√

p cos θn)2 is the second moment of the number of solutions modulo p. From [Bi]
we have that this is p + O (1); the explicit formula given in [Bi] for the second moment is wrong; see
Appendix B for the correct statement. Substituting yields

∣∣∣∣∣
Ṽ p∑

n=1

cos(2θn) − Ṽ p

2

∣∣∣∣∣ 	 O (1). (3.9)

The proof is completed by showing that
∑Ṽ p

n=1 cos(2mθn) = O m(Ṽ 1/2
p ) provided 2 � m � M . In

order to obtain the best possible results, it is important to understand the implied constants, as M
will have to grow with Ṽ p (which is of size p2). While it is possible to analyze this sum for any m by
brute force, we must have M growing with p, and thus we need an argument that works in general.
As c±1 
= 0 but cm = 0 for |m| � 2, we expect (and we will see) that the argument below does break
down when |m| = 1.

There are many possible combinatorial identities we can use to express cos(2mθn) in terms of
powers of cos(θn). We use the following (for a proof, see Definition 2 and Eq. (3.1) of [Mil4]):

2 cos(2mθn) =
m∑

r=0

c2m,2r(2 cos θn)
2r, (3.10)

where c2r = (2r)!/2, c0,0 = 0, c2m,0 = (−1)m2 for m � 1, and for 1 � r � m set

c2m,2r = (−1)r+m

c2r

r−1∏
j=0

(
m2 − j2) = (−1)m+r

c2r

m · (m + r − 1)!
(m − r)! . (3.11)

We now sum (3.10) over n and divide by Ṽ p , the cardinality of the family. In the argument below, at
one point we replace 22r in an error term with 2012 1

r+1

(2r
r

) ·m2; this allows us to pull the rth Catalan

number, 1
r+1

(2r
r

)
, out of the error term.7 Using Lemma 3.1 we find

1

Ṽ p

Ṽ p∑
n=1

2 cos(2mθn) =
m∑

r=0

c2m,2r
1

Ṽ p

Ṽ p∑
n=1

(2 cos θn)
2r

=
m∑

r=0

(
1

r + 1

(
2r

r

)
+ O

(
22r Ṽ

− 1−c−ε
2

p
))

c2m,2r

=
m∑

r=0

(
1

r + 1

(2r)!
r!r!

(−1)m+r2

(2r)!
m · (m + r)!

(m − r)! · (m + r)

)
· (1 + O

(
m2 Ṽ

− 1−c−ε
2

p
))

= (−1)m2m
m∑

r=0

(
(−1)r m!

r!(m − r)!
(m + r)!

m!r!
1

(r + 1)(m + r)

)

· (1 + O
(
m2 Ṽ

− 1−c−ε
2

p
))

7 The reason this is valid is that the largest binomial coefficient is the middle (or the middle two when the upper argument

is odd). Thus 22r = (1 + 1)2r � (2r + 1)
(2r

r

) � 2(m + 1)
(2r

r

)
(as m � r), and the claim follows from 2012m2

r+1 � 2(m + 1) for m � 2
and 0 � r � m.
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= (−1)m2m
m∑

r=0

(
(−1)r

(
m

r

)(
m + r

r

)
1

(r + 1)(m + r)

)

· (1 + O
(
m2 Ṽ

− 1−c−ε
2

p
))

. (3.12)

We first bound the error term. For our range of r,
(m+r

r

)
�

(2m
m

)
� 22m . The sum of

(m
r

)
over r is 2m ,

and we get to divide by at least m + r � m. Thus the error term is bounded by

O
(
m223m Ṽ

− 1−c−ε
2

p
)
. (3.13)

We now turn to the main term. It is just (−1)m2m times the sum in Lemma A.3, which is shown in
that lemma to equal 0 for any |m| � 2. �
Remark 3.3. Without Lemma A.3, our combinatorial expansion would be useless. We thus give several
proofs in Appendix A (including a brute force, hypergeometric and an application of Zeilberger’s Fast
Algorithm).

Remark 3.4. It is possible to get a better estimate for the error term by a more detailed analysis
of

∑
r�m

(m
r

)(m+r
r

)
; however, the improved estimates only change the constants in the discrepancy

estimates, and not the savings. This is because this sum is at least as large as the term when r ≈ m/2,
and this term contributes something of the order 33m/2/m by Stirling’s formula. We will see that any
error term of size 3am for a fixed a gives roughly the same value for the best cutoff choice for M ,
differing only by constants. Thus we do not bother giving a more detailed analysis to optimize the
error here.

We now prove the first of our two main theorems.

Proof of Theorem 1.3. We must determine the optimal M to use in (2.4):

D I,Ṽ p
(μst) 	 Ṽ p

M + 1
+

∑
1�m�M

(
1

M + 1
+ 1

m

)(
m223m Ṽ

− 1−c−ε
2

p
)

	 Ṽ p

M
+ M23M Ṽ

− 1−c−ε
2

p (3.14)

as 1
M+1 	 1

m and
∑

m�m 23m 	 23M . For all c > 0 we find the minimum error by setting the two
terms equal to each other, which yields

Ṽ
3−c−ε

2
p = M223M 	 e3M , (3.15)

which when equating yields8

e3M ≈ e
3−c−ε

2 log Ṽ p , (3.16)

which implies

M ≈ 3 − c − ε

6
log Ṽ p . (3.17)

8 We could obtain a slightly better constant below with a little more work; however, as it will not affect the quality of our
result we prefer to give the simpler argument with a slightly worse constant.
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We thus see that we may find a constant C such that

D I,Ṽ p
(μst) � C

Ṽ p

log Ṽ p
. � (3.18)

4. Proof of effective equidistribution for one-parameter families

Instead of studying the family of all elliptic curves, we can also investigate one-parameter families
over Q(T ). Thus, consider the family E : y2 = x3 + A(T )x + B(T ), where A(T ) and B(T ) are in Z(T ).
We assume that j(T ) is not constant for the family. Michel [Mic] proved a Sato–Tate law for such
families. In particular, he proved

Theorem 4.1. (See Michel [Mic].) Consider a one-parameter family of elliptic curves over Q(T ) with non-
constant j-invariant. Let c� denote the number of complex zeros of �(z) = 0 (where � is the discriminant),
ψp an additive character (and set δψp = 0 if this character is trivial and 1 otherwise), and write at,p as
2
√

p cos θt,p with θt,p ∈ [0,π ]. Let

symk(θ) = sin((k + 1)θ)

sin θ
. (4.1)

Then ∣∣∣∣ 1

p

∑
t mod p
�(t) 
=0

symk θt,p

∣∣∣∣ �
(k + 1)(c� − δψp − 1)√

p
. (4.2)

Additionally, we have ∣∣∣∣ 1

p

∑
t mod p
�(t) 
=0

cos θt,p

∣∣∣∣ � C√
p

(4.3)

for some C depending on the family. Finally, we may drop the additive character and drop the restriction that
�(t) 
= 0 at the cost of a bounded number of summands, each of which is at most (k + 1),9 which implies these
relations still hold provided we multiply the bounds on the right-hand side by some constant C ′ .

Remark 4.2. Miller [Mil2] showed that the error term in Theorem 4.1 is sharp. Specifically, the second
moment of the family y2 = x3 + T x2 + 1 of elliptic curves over Q(T ) for p > 2 is

A2(p) :=
∑

t mod p

at(p)2 = p2 − n3,2,p p − 1 + p
∑

x mod p

(
4x3 + 1

p

)
, (4.4)

where n3,2,p denotes the number of cube roots of 2 modulo p. For any [a,b] ⊂ [−2,2] there are
infinitely many primes p ≡ 1 mod 3 such that

A2(p) − (
p2 − n3,2,p p − 1

) ∈ [
a · p3/2,b · p3/2]. (4.5)

9 This is readily seen by writing sin((k + 1)θ) = sin(θ) cos(kθ) + cos(θ) sin(kθ) and proceeding by induction.
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Theorem 4.1 is used by Michel to obtain good estimates for the average rank in these families,
as well as (of course) proving Sato–Tate laws. Using our techniques above, we can convert Michel’s
bounds to a quantified equidistribution law.

We recall the notation for Theorem 1.4. Consider a one-parameter family of elliptic curves
over Q(T ) with non-constant j(T ). Let there be V p = p + O (1) reduced curves modulo p, and set
Ṽ p = 2V p . For each curve Et consider the angles θt,p and π − θt,p , with θt,p ∈ [0,1], and the normal-
ized angles xn = θt,p/π and xn+V p = 1 − θt,p/π (for 1 � n � V p).

Proof of Theorem 1.4. We must show D I,Ṽ p
(μst) 	 Ṽ 3/4

p (where Ṽ p ≈ 2p). As in the proof of Theo-
rem 1.3, it suffices to show ∣∣∣∣ ∑

t mod p

cos(2mθt,p) − cm p

∣∣∣∣, (4.6)

with c0 = 1, c1 = −1/2 and all other cm = 0. This is because we have enlarged our set of normalized
angles to be symmetric about 1/2. Thus when we study e(mxn) = cos(2πmxn)+ i sin(2πmxn), the sine
sum vanishes. We are therefore left with the cosine sum, with the normalized angles xn and xn+V p

contributing equally. Thus we may replace the sum of the cosine piece over n with a sum over the
angles θt,p , so long as we remember to multiply by 2 when computing the discrepancy later. While
we should subtract cm V p and not cm p, as V p = p + O (1) the error in doing this is dwarfed by the
error of the piece we are studying.

The case of 2m = 0 is trivial. If 2m = 2, then we are studying cos 2θt,p = − 1
2 + 1

2 sym2(θ). By
Theorem 4.1, we thus find that∣∣∣∣ ∑

t mod p

cos(2θt,p) + p

2

∣∣∣∣ =
∣∣∣∣ ∑
t mod p

1

2
sym2(θ)

∣∣∣∣ � C√
p

. (4.7)

For higher m, we use Chebyshev polynomials (see [Wi]). The Chebyshev polynomials of the first kind
are given by T�(cos θ) = cos(�θ); the Chebyshev polynomials of the second kind are U�(cos θ) =
sym�+1(θ). These polynomials are related by

T�(cos θ) = U�(cos θ) − U�−2(cos θ)

2
= sym�(θ) − sym�−2(θ)

2
; (4.8)

we use this with � = 2m � 4. Using Theorem 4.1 we see that for m � 2,∣∣∣∣ ∑
t mod p

cos(2mθt,p)

∣∣∣∣ � Cm
√

p. (4.9)

From (2.4), the discrepancy satisfies

1

2
D I,Ṽ p

(μst) � p‖μ‖
M + 1

+
∑

1�m�M

(
1

M + 1
+ min

(
b − a,

1

π |m|
))∣∣∣∣∣

p∑
t=1

e(mxn) − cm p

∣∣∣∣∣. (4.10)

Using our bounds, we have

D I,p(μ) 	 p‖μ‖
M + 1

+
M∑ Cm

√
p

m
	 p

M
+ M

√
p. (4.11)
m=1
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The two error terms are of the same order of magnitude when M2 = √
p, or M = p1/4. This leads to

D I,p(μ) 	 p3/4. � (4.12)

Remark 4.3. Note we could have used the Chebyshev identities to handle the m = 1 case as well, as
in fact we implicitly did when we rewrote cos 2θ ; we prefer to break the analysis into two cases as
the m = 1 case has cm 
= 0.

Remark 4.4. Rosen and Silverman [RS] proved a conjecture of Nagao [Na] relating the distribution of
the aE (p)’s and the rank. Unfortunately the known lower order term due to the rank of the family is
of size p1/2, which is significantly smaller than the error terms of size p3/4 analyzed above. As noted
in Remark 4.2, the error term is sharp and cannot be improved for all families.

Appendix A. Combinatorial identities

We first state some needed properties of the binomial coefficients. For n, r non-negative integers
we set

(n
k

) = n!
k!(n−k)! . We generalize to real n and k a positive integer by setting

(
n

k

)
= n(n − 1) · · · (n − (k − 1))

k! , (A.1)

which clearly agrees with our original definition for n a positive integer. Finally, we set
(n

0

) = 1 and(n
k

) = 0 if k is a negative integer.
To prove our main result we need the following two lemmas; we follow the proofs in [Ward].

Lemma A.1 (Vandermonde’s Convolution Lemma). Let r, s be any two real numbers and k, m, n integers. Then

∑
k

(
r

m + k

)(
s

n − k

)
=

(
r + s

m + n

)
. (A.2)

Proof. It suffices to prove the claim when r, s are integers. The reason is that both sides are polyno-
mials, and if the polynomials agree for an infinitude of integers then they must be identical. It suffices
to consider the special case m = 0, in which case we are reduced to showing(

r

k

)(
s

n − k

)
=

(
r + s

n

)
. (A.3)

Consider the polynomial

(x + y)r(x + y)s = (x + y)r+s. (A.4)

If we use the binomial theorem to expand the left-hand side of (A.4), we get the coefficient of the
xn yr+s−n is the left-hand side of (A.3), while if we use the binomial theorem to find the coefficient of
xn yr+s−n on the right-hand side of (A.4) we get (A.3), which completes the proof. �
Lemma A.2. Let �, m, s be non-negative integers. Then

∑
k

(−1)k
(

�

m + k

)(
s + k

n

)
= (−1)�+m

(
s − m

n − �

)
. (A.5)
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Proof. Using
(a

b

) = ( a
a−b

)
, we rewrite

(s+k
n

)
as

( s+k
s+k−n

)
, and we then rewrite

( s+k
s+k−n

)
as (−1)s+k−n

(−n−1
s+k−n

)
by using the extension of the binomial coefficient, where we have pulled out all the negative signs in
the numerators. The advantage of this simplification is that the summation index is now only in the
denominator; further, the power of −1 is now independent of k. Factoring out the sign, our quantity
is equivalent to

(−1)s−n
∑

k

(
�

m + k

)( −n − 1

s + k − n

)
= (−1)s−n

∑
k

(
�

� − m − k

)( −n − 1

s + k − n

)
, (A.6)

where we again use
(a

b

) = ( a
a−b

)
. By Vandermonde’s Convolution, this equals (−1)s−n

(
�−n−1

�−m−n+s

)
. Using( s−m

�−m−n+s

) = (s−m
n−�

)
and collecting powers of −1 completes the proof (note (−1)�−m = (−1)�+m). �

Lemma A.3. Let m be an integer greater than or equal to 1. Then

m∑
r=0

(−1)r
(

m

r

)(
m + r

r

)
1

(r + 1)(m + r)
=

{
1/2 if m = 1,

0 if m � 2.
(A.7)

Proof. The case m = 1 follows by direct evaluation. Consider now m � 2. We have

Sm =
m∑

r=0

(−1)r
(

m

r

)(
m + r

r

)
1

(r + 1)(m + r)

=
m∑

r=0

(−1)r
(

m

r

)
m + 1

m + 1

(
m + r

r

)
1

(r + 1)(m + r)

=
m∑

r=0

(−1)r m!(m + 1)

(r + 1) · r!m!
1

m + 1

(m + r)(m + r − 1)!
r!m · (m − 1 + r)!

1

m + r

=
m∑

r=0

(−1)r
(

m + 1

r + 1

)(
m − 1 + r

r

)
1

m(m + 1)

= 1

m(m + 1)

m∑
r=0

(−1)r
(

m + 1

r + 1

)(
m − 1 + r

m − 1

)
. (A.8)

We change variables and set u = r + 1; as r runs from 0 to m, u runs from 1 to m + 1. To have a
complete sum, we want u to start at 0; thus we add in the u = 0 term, which is

(m−2
m−1

)
. As m � 2,

this is 0 from the extension of the binomial coefficient (this is the first of two places where we use
m � 2). Our sum Sm thus equals

Sm = − 1

m(m + 1)

m+1∑
u=0

(−1)u
(

m + 1

u

)(
m − 2 + u

m − 1

)
. (A.9)

We now use Lemma A.2 with k = u, m = 0, � = m + 1, s = m − 2 and n = m − 1; note the conditions
of that lemma require s to be a non-negative integer, which translates to our m � 2. We thus find

Sm = − 1

m(m + 1)
(−1)m+1

(
m − 2

−2

)
= 0, (A.10)

which completes the proof. �
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We give another proof of Lemma A.3 below using hypergeometric functions; we thank Frederick
Strauch for showing us this approach.

Remark A.4. We present an alternative proof of Lemma A.3 using the hypergeometric function

2 F1(a,b, c; z) = Γ (c)

Γ (b)Γ (c − b)

1∫
0

tb−1(1 − t)c−b−1 dt

(1 − tz)a
. (A.11)

The following identity for the normalization constant of the Beta function is crucial in the expansions:

B(x, y) =
1∫

0

tx−1(1 − t)y−1 dt = Γ (x)Γ (y)

Γ (x + y)
. (A.12)

We can use the geometric series formula to expand (A.11) as a power series in z involving Gamma
factors. Rewriting

(m
r

)
as (−1)r

(r−m−1
r

)
, after some algebra we find

Sm = Γ (m)2 F1(−m,m,2;1)

Γ (2)Γ (1 + m)
= Γ (m)

Γ (1 + m)Γ (2 + m)Γ (2 − m)
(A.13)

(our summation over r in the definition of Sm has become the series expansion of 2 F1(−m,m,2;1)),
where the last step uses

2 F1(a,b, c;1) = Γ (c)Γ (c − a − b)

Γ (c − a)Γ (c − b)
(A.14)

which follows from the normalization constant of the Beta function. Note that the right-hand side
of (A.13) is 1/2 when m = 1 and 0 for m � 2 because for such m, 1/Γ (2 − m) = 0 due to the pole of
Γ (2 − m).

Remark A.5. It is also possible to prove this lemma through symbolic manipulations. Using the results
from [PS,PSR], one may input this into a Mathematica package, which outputs a proof.

Appendix B. Moments for the family of all curves

Birch [Bi] claims the following: Let

S R(p) =
∑

a mod p

∑
b mod p

[ ∑
x mod p

(
x3 − ax − b

p

)]2R

. (B.1)

Then for p � 5,

S1(p) = p2,

S2(p) = 2p3 − 3p,

S3(p) = 5p4 − 9p2 − 5p. (B.2)

There are obviously typos here. We know the Legendre sum is at most 2
√

p in absolute value, thus
we expect S R(p) to be on the order of p2 · (√p )2R = pR+2; note the powers of p are too low (and
they are too high for dividing S R(p) by the cardinality of the family).
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Assuming S R(p) is a polynomial in p, from exploring the results for small p we are led to

S1(p) = p3 − p2,

S2(p) = 2p4 − 2p3 − 3p2 + 3p,

S3(p) = 5p5 − 5p4 − 9p3 + 4p2 + 5p. (B.3)

Note these are exactly the results from Birch multiplied by p − 1; we thank Andrew Granville for
pointing this out to us. In other words, the formulas in Birch are what remains after dividing by the
trivial multiplicative factor p − 1.

Let S ′
R(p) denote the same sum as S R(p), but with the additional restriction that 4a3 
= 27b2. It

is readily seen that S ′
R(p) = S R(p) + (p − 1); the reason is that if the discriminant equals zero, then

x3 −ax−b = (x− c)2(x−d) for some c, d, and the sum of these Legendre symbols over all x modulo p
is ±1 (the sum is the same as

∑
x
≡c mod p

(x−d
p

) = −(c−d
p

) = ±1). Explicitly, we find

S1(p) = p3 − p2 − p + 1,

S2(p) = 2p4 − 2p3 − 3p2 + 2p + 1,

S3(p) = 5p5 − 5p4 − 9p3 + 4p2 + 4p + 1. (B.4)

As the evaluation of these sums is central to this and other investigations, we provide two proofs of
the formula for S1(p) in the hopes that these arguments will be of use to other researchers studying
similar questions.

We first give the proof in [Mil1]. We have the following expansion of
(x

p

)
:

(
x

p

)
= G−1

p

p∑
c=1

(
c

p

)
e
(

cx

p

)
, (B.5)

where e
(a

p

) = exp(2π ia/p) and G p = ∑
a(p)

(a
p

)
e
(a

p

)
, which equals

√
p for p ≡ 1(4) and i

√
p for

p ≡ 3(4). See, for example, [BEW].
For the curve y2 = f E(x) = x3 − ax − b, aE(p) = −∑

x(p)

( f E (x)
p

)
. We use (B.5) to rewrite aE(p) as

aE(p) = −G−1
p

∑
x(p)

p∑
c=1

(
c

p

)
e
(

cf E(x)

p

)
. (B.6)

We take the complex conjugate, which on the RHS introduces a minus sign into the exponential and
sends G p to G p , and has no effect on the LHS (which is real). The sum becomes

S = (G p G p)−1
p−1∑
a=0

p−1∑
b=0

2∏
i=1

p−1∑
xi=0

p−1∑
ci=0

(
ci

p

)
e
(

(−1)i+1(cix3
i − ciaxi − cib)

p

)

= 1

p

p−1∑
x1,c1=0

p−1∑
x2,c2=0

(
c1c2

p

)
e
(

c1x3
1 − c2x3

2

p

) p−1∑
a=0

e
(−(c1x1 − c2x2)a

p

)

·
p−1∑

e
(−(c1 − c2)b

p

)
. (B.7)
b=0
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The b-sum vanishes unless p|(c1 − c2), which only happens if c1 = c2 = c. The a-sum vanishes unless

p|(cx1 − cx2). As c 
≡ 0(p) (we have the factor
(c

p

)
) this forces x1 = x2 = x. As c is non-zero,

(c2

p

) = 1,
the first exponential factor is 1, and the sums collapse to

S = 1

p

p−1∑
c=1

1
p−1∑
x=0

1
p−1∑
a=0

1
p−1∑
b=0

1

= 1

p
(p − 1) · p · p · p = p3 − p2. (B.8)

Remark B.1. We sketch an alternate proof for S1(R). We have

S1(R) =
∑

a mod p

∑
b mod p

∑
x mod p

∑
y mod p

(
x3 − ax − b

p

)(
y3 − ay − b

p

)
. (B.9)

We use the following result:

R =
∑

n mod p

(
n + c1

p

)(
n + c2

p

)

=
∑

n mod p

(
n2 + n(c2 − c1)

p

)

=
∑

n mod p

(
n2 + αn(c2 − c1)

p

)
(B.10)

for any α 
≡ 0 mod p. Thus

(p − 1)R =
∑

α 
≡0 mod p

∑
n mod p

(
n2 + αn(c2 − c1)

p

)
= −(p − 1), (B.11)

so R = −1. Thus

∑
n mod p

(
n + c1

p

)(
n + c2

p

)
=

{
p − 1 if c1 ≡ c2 mod p,

−1 otherwise.
(B.12)

We rewrite our sum (replacing a with −a and b with −b) as

S1(R) =
∑

a mod p

∑
x mod p

∑
y mod p

[ ∑
b mod p

(
b + (x3 + ax)

p

)(
b + (y3 + ay)

p

)]
. (B.13)

When is x3 + ax ≡ y3 + ay mod p? This is always true if x = y and a is arbitrary, which gives a
contribution of p · p · (p − 1). If x 
= y (which happens p2 − p times), there is a unique value of a that
works, namely −(x3 − y3)/(x − y). For this special a the contribution is (p2 − p) · 1 · (p − 1), and for
the other a the contribution is (p2 − p) · (p − 1) · (−1). Adding yields p3 − p2.
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