54 research outputs found

    ENGINEERED IN VITRO BREAST CANCER MODELS SHOW PHENOTYPIC DIFFERENTIATION CHARACTERISTICS OF EARLY VS. LATE-STAGE DISEASE

    Get PDF
    Cancer drug discovery and development is challenged by poor prediction of drug responses in in vitro disease models. Results from clinical trials suggest that just 5% of drugs tested are successful in patients. Currently used disease models such as two-dimensional (2D) cell monolayers and in vivo animal models fail to recapitulate the human tumor microenvironment. Further, disease progression from the non-invasive to metastatic stage needs models that can recapitulate each stage. Hence, there is an unmet need to develop three-dimensional (3D) models that capture natural tumor progression for better understanding of disease biology as well as screening of drug regimens acting on different disease stages. In this work, we have characterized 3D breast microtumors ranging from 150 to 600 μm diameters using non-invasive T47D cells with precise control over physicochemical microenvironmental factors. In this study, we test the hypothesis that the size-controlled microtumors will exhibit differential biochemical features and drug response arising from unique molecular signatures created by variable tumor microenvironments. To test this hypothesis, we studied the physicochemical features such as hypoxia, reactive oxygen species, metabolic activity, and cell cycle status. Additionally, the expression of key regulators of growth/proliferation pathways in breast cancer progression such as estrogen receptor alpha (ER-α) and growth factor receptor/s was studied and efficacy of clinically used inhibitors such as 4-hydroxytamoxifen (4-OHT) was evaluated. The results indicated that large T47D microtumors (600 μm) exhibited traits of clinically advanced tumors such as collective cell migration, mesenchymal marker upregulation, loss of ER-α and endocrine resistance in contrast to the small microtumors (150 μm). Thus, the engineered in vitro models could successfully recapitulate phenotypic differentiation characteristics of early vs. late disease stage in the same non-invasive T47D cells just by precisely controlling the microtumor size, which further regulated the tumor microenvironmental factors. The large microtumors (600 μm) were found to resemble features of advanced stage breast cancer whereas the small microtumors (150 μm) recapitulated features of early stage breast cancer. Hence, such disease stage-specific microtumor models could help in the evaluation of crucial mechanisms in breast tumor progression correlated to tumor size and in the screening of therapeutic candidate/s

    Residue conservation and dimer-interface analysis of olfactory receptor molecular models

    Get PDF
    Olfactory Receptors (ORs) are members of the Class A rhodopsin like G-protein coupled receptors (GPCRs) which are the initial players in the signal transduction cascade, leading to the generation of nerve impulses transmitted to the brain and resulting in the detection of odorant molecules. Despite the accumulation of thousands of olfactory receptor sequences, no crystal structures of ORs are known tο date. However, the recent availability of crystallographic models of a few GPCRs allows us to generate homology models of ORs and analyze their amino acid patterns, as there is a huge diversity in OR sequences. In this study, we have generated three-dimensional models of 100 representative ORs from Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans and Sacharomyces cerevisiae which were selected on the basis of a composite classification scheme and phylogenetic analysis. The crystal structure of bovine rhodopsin was used as a template and it was found that the full-length models have more than 90% of their residues in allowed regions of the Ramachandran plot. The structures were further used for analysis of conserved residues in the transmembrane and extracellular loop regions in order to identify functionally important residues. Several ORs are known to be functional as dimers and hence dimer interfaces were predicted for OR models to analyse their oligomeric functional state

    PKA and CDK5 Can Phosphorylate Specific Serines on the Intracellular Domain of Podoplanin (PDPN) to Inhibit Cell Motility.

    Get PDF
    Podoplanin (PDPN) is a transmembrane glycoprotein that promotes tumor cell migration, invasion, and cancer metastasis. In fact, PDPN expression is induced in many types of cancer. Thus, PDPN has emerged as a functionally relevant cancer biomarker and chemotherapeutic target. PDPN contains 2 intracellular serine residues that are conserved between species ranging from mouse to humans. Recent studies indicate that protein kinase A (PKA) can phosphorylate PDPN in order to inhibit cell migration. However, the number and identification of specific residues phosphorylated by PKA have not been defined. In addition, roles of other kinases that may phosphorylate PDPN to control cell migration have not been investigated. We report here that cyclin dependent kinase 5 (CDK5) can phosphorylate PDPN in addition to PKA. Moreover, results from this study indicate that PKA and CDK5 cooperate to phosphorylate PDPN on both intracellular serine residues to decrease cell motility. These results provide new insight into PDPN phosphorylation dynamics and the role of PDPN in cell motility. Understanding novel mechanisms of PDPN intracellular signaling could assist with designing novel targeted chemotherapeutic agents and procedures

    Serines in the Intracellular Tail of Podoplanin (PDPN) Regulate Cell Motility

    Get PDF
    Podoplanin (PDPN) is a transmembrane receptor that affects the activities of Rho, ezrin, and other proteins to promote tumor cell motility, invasion, and metastasis. PDPN is found in many types of cancer and may serve as a tumor biomarker and chemotherapeutic target. The intracellular region of PDPN contains only two serines, and these are conserved in mammals including mice and humans. We generated cells from the embryos of homozygous null Pdpn knock-out mice to investigate the relevance of these serines to cell growth and migration on a clear (PDPN-free) background. We report here that one or both of these serines can be phosphorylated by PKA (protein kinase A). We also report that conversion of these serines to nonphosphorylatable alanine residues enhances cell migration, whereas their conversion to phosphomimetic aspartate residues decreases cell migration. These results indicate that PKA can phosphorylate PDPN to decrease cell migration. In addition, we report that PDPN expression in fibroblasts causes them to facilitate the motility and viability of neighboring melanoma cells in coculture. These findings shed new light on how PDPN promotes cell motility, its role in tumorigenesis, and its utility as a functionally relevant biomarker and chemotherapeutic target

    Src activates Abl to augment Robo1 expression in order to promote tumor cell migration

    Get PDF
    Cell migration is an essential step in cancer invasion and metastasis. A number of orchestrated cellular events involving tyrosine kinases and signaling receptors enable cancer cells to dislodge from primary tumors and colonize elsewhere in the body. For example, activation of the Src and Abl kinases can mediate events that promote tumor cell migration. Also, activation of the Robo1 receptor can induce tumor cell migration. However, while the importance of Src, Abl, and Robo1 in cell migration have been demonstrated, molecular mechanisms by which they collectively influence cell migration have not been clearly elucidated. In addition, little is known about mechanisms that control Robo1 expression. We report here that Src activates Abl to stabilize Robo1 in order to promote cell migration. Inhibition of Abl kinase activity by siRNA or kinase blockers decreased Robo1 protein levels and suppressed the migration of transformed cells. We also provide evidence that Robo1 utilizes Cdc42 and Rac1 GTPases to induce cell migration. In addition, inhibition of Robo1 signaling can suppress transformed cell migration in the face of robust Src and Abl kinase activity. Therefore, inhibitors of Src, Abl, Robo1 and small GTPases may target a coordinated pathway required for tumor cell migration

    Plant Lectin Can Target Receptors Containing Sialic Acid, Exemplified by Podoplanin, to Inhibit Transformed Cell Growth and Migration

    Get PDF
    Cancer is a leading cause of death of men and women worldwide. Tumor cell motility contributes to metastatic invasion that causes the vast majority of cancer deaths. Extracellular receptors modified by α2,3-sialic acids that promote this motility can serve as ideal chemotherapeutic targets. For example, the extracellular domain of the mucin receptor podoplanin (PDPN) is highly O-glycosylated with α2,3-sialic acid linked to galactose. PDPN is activated by endogenous ligands to induce tumor cell motility and metastasis. Dietary lectins that target proteins containing α2,3-sialic acid inhibit tumor cell growth. However, anti-cancer lectins that have been examined thus far target receptors that have not been identified. We report here that a lectin from the seeds of Maackia amurensis (MASL) with affinity for O-linked carbohydrate chains containing sialic acid targets PDPN to inhibit transformed cell growth and motility at nanomolar concentrations. Interestingly, the biological activity of this lectin survives gastrointestinal proteolysis and enters the cardiovascular system to inhibit melanoma cell growth, migration, and tumorigenesis. These studies demonstrate how lectins may be used to help develop dietary agents that target specific receptors to combat malignant cell growth

    Podoplanin: An Emerging Cancer Biomarker and Therapeutic Target

    Get PDF
    Podoplanin (PDPN) is a transmembrane receptor glycoprotein that is upregulated on transformed cells, cancer associated fibroblasts and inflammatory macrophages that contribute to cancer progression. In particular, PDPN increases tumor cell clonal capacity, epithelial mesenchymal transition, migration, invasion, metastasis and inflammation. Antibodies, CAR-T cells, biologics and synthetic compounds that target PDPN can inhibit cancer progression and septic inflammation in preclinical models. This review describes recent advances in how PDPN may be used as a biomarker and therapeutic target for many types of cancer, including glioma, squamous cell carcinoma, mesothelioma and melanoma

    Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead.

    Get PDF
    Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology

    Early and extended erythropoietin monotherapy after hypoxic ischaemic encephalopathy:a multicentre double-blind pilot randomised controlled trial

    Get PDF
    Objective: To examine the feasibility of early and extended erythropoietin monotherapy after hypoxic ischaemic encephalopathy (HIE). Design: Double-blind pilot randomised controlled trial.Setting: Eight neonatal units in South Asia. Patients: Neonates (≥36 weeks) with moderate or severe HIE admitted between 31 December 2022 and 3 May 2023. Interventions: Erythropoietin (500 U/kg daily) or to the placebo (sham injections using a screen) within 6 hours of birth and continued for 9 days. MRI at 2 weeks of age. Main outcomes and measures: Feasibility of randomisation, drug administration and assessment of brain injury using MRI. Results: Of the 154 neonates screened, 56 were eligible; 6 declined consent and 50 were recruited; 43 (86%) were inborn. Mean (SD) age at first dose was 4.4 (1.2) hours in erythropoietin and 4.1 (1.0) hours in placebo. Overall mortality at hospital discharge occurred in 5 (19%) vs 11 (46%) (p=0.06), and 3 (13%) vs 9 (40.9%) (p=0.04) among those with moderate encephalopathy in the erythropoietin and placebo groups. Moderate or severe injury to basal ganglia, white matter and cortex occurred in 5 (25%) vs 5 (38.5%); 14 (70%) vs 11 (85%); and 6 (30%) vs 2 (15.4%) in the erythropoietin and placebo group, respectively. Sinus venous thrombosis was seen in two (10%) neonates in the erythropoietin group and none in the control group. Conclusions: Brain injury and mortality after moderate or severe HIE are high in South Asia. Evaluation of erythropoietin monotherapy using MRI to examine treatment effects is feasible in these settings. Trial registration number: NCT05395195

    Stress Leads to Contrasting Effects on the Levels of Brain Derived Neurotrophic Factor in the Hippocampus and Amygdala

    Get PDF
    Recent findings on stress induced structural plasticity in rodents have identified important differences between the hippocampus and amygdala. The same chronic immobilization stress (CIS, 2h/day) causes growth of dendrites and spines in the basolateral amygdala (BLA), but dendritic atrophy in hippocampal area CA3. CIS induced morphological changes also differ in their temporal longevity- BLA hypertrophy, unlike CA3 atrophy, persists even after 21 days of stress-free recovery. Furthermore, a single session of acute immobilization stress (AIS, 2h) leads to a significant increase in spine density 10 days, but not 1 day, later in the BLA. However, little is known about the molecular correlates of the differential effects of chronic and acute stress. Because BDNF is known to be a key regulator of dendritic architecture and spines, we investigated if the levels of BDNF expression reflect the divergent effects of stress on the hippocampus and amygdala. CIS reduces BDNF in area CA3, while it increases it in the BLA of male Wistar rats. CIS-induced increase in BDNF expression lasts for at least 21 days after the end of CIS in the BLA. But CIS-induced decrease in area CA3 BDNF levels, reverses to normal levels within the same period. Finally, BDNF is up regulated in the BLA 1 day after AIS and this increase persists even 10 days later. In contrast, AIS fails to elicit any significant change in area CA3 at either time points. Together, these findings demonstrate that both acute and chronic stress trigger opposite effects on BDNF levels in the BLA versus area CA3, and these divergent changes also follow distinct temporal profiles. These results point to a role for BDNF in stress-induced structural plasticity across both hippocampus and amygdala, two brain areas that have also been implicated in the cognitive and affective symptoms of stress-related psychiatric disorders
    corecore