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Podoplanin (PDPN) is a transmembrane receptor glycoprotein that is upregulated on
transformed cells, cancer associated fibroblasts and inflammatory macrophages that
contribute to cancer progression. In particular, PDPN increases tumor cell clonal
capacity, epithelial mesenchymal transition, migration, invasion, metastasis and
inflammation. Antibodies, CAR-T cells, biologics and synthetic compounds that tar-
get PDPN can inhibit cancer progression and septic inflammation in preclinical mod-
els. This review describes recent advances in how PDPN may be used as a
biomarker and therapeutic target for many types of cancer, including glioma, squa-
mous cell carcinoma, mesothelioma and melanoma.
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1 | INTRODUCTION

Podoplanin (PDPN) is a unique transmembrane glycoprotein recep-
tor. PDPN presents a heavily glycosylated amino terminal extracellu-
lar domain of approximately 130 amino acids, followed by a single
transmembrane domain of approximately 25 amino acids, and a short
intracellular domain of approximately 10 amino acids. PDPN does
not contain known functional domains or enzymatic activities. It uti-
lizes other proteins, including C-type lectin-like receptor-2 (CLEC-2),
heat shock protein A9 (HSPA9), CD44, galectin 8, chemokine (C-C
motif) ligand 21 (CCL21), ezrin, moesin, protein kinase A (PKA) and
cyclin dependent kinase 5 (CDK5), to affect cell behavior as summa-
rized schematically in Figure 1. These ligands and binding partners
interact with PDPN to control tumor cell migration, invasion and
metastasis. ™

Podoplanin expression is induced by tumor promoters including
TPA, RAS and Src.>” For example, the Src tyrosine kinase utilizes
the focal adhesion adaptor protein Cas/BCAR1 to induce PDPN
expression to promote tumor cell motility.”> Src is a nonreceptor pro-
tein kinase that promotes nonanchored tumor cell growth and migra-
tion required for invasion and metastasis. Src is not mutated in most
cancers. However, Src activity is associated with many types of
human cancer, including tumors of the colon, breast, pancreas, brain
and skin.8?

Cells transformed by a variety of chemicals, viral agents and
oncogenes, including the Src tyrosine kinase, can be normalized by
contact with nontransformed cells. This process, called “contact nor-
malization” can force transformed cells to assume a normal morphol-
ogy and reside in many organs, including breast, intestine and skin,
for many years.'®'2 Comparisons between nontransformed cells,
transformed cells and transformed cells undergoing contact normal-
ization provide an extremely sensitive way to identify genes that

control malignant and metastatic growth. However, Src kinase
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activity alters the expression of approximately 3000 genes (approxi-
mately 10% of the transcriptome). However, fewer than 40 of these
(approximately 0.1% of the transcriptome) are affected by contact
normalization, with PDPN identified as a tumor promoter at the top
of this list.>12

Podoplanin expression is induced by many tumor promoters and
can be found in many types of cancer.%*'2 High clonal expansion
capacity is a characteristic feature of tumor initiating cells (TIC) and
PDPN is a TIC marker for human squamous cell carcinoma.*® Using
single-cell live imaging based on the fluorescent ubiquitination-based
cell cycle indicator (Fucci) system, individual PDPN expressing A431
human squamous cell carcinoma cells were shown to create large
colonies more often than single A431 cells that do not express
PDPN.* Although no significant differences in cell cycling were
observed, cell death was significantly lower in the progenies derived
from PDPN-positive single cells. RNA interference studies indicate
that PDPN suppression increases cell death of single A431 cells, thus
preventing them from forming larger colonies. Moreover, the fre-
quency of large colony formation by PDPN-positive cells is
decreased by treatment with a Rho-associated coiled-coil kinase
(ROCK) inhibitor, whereas no difference was observed in single
PDPN-negative cells.** These data, summarized in Figures 1 and 2,
point to a role for PDPN in the clonal expansion capacity of TIC
populations.

2 | PODOPLANIN AS A CANCER
BIOMARKER

Podoplanin is expressed in several types of cancer.%®'2 Oral cancer
exemplifies the utility of PDPN expression as a cancer biomarker.
PDPN expression increases oral squamous cell carcinoma cell migra-

tion, which can lead to increased metastasis.*>*” Accordingly, PDPN



KRISHNAN ET AL

CLERVWITSE Cancer Science

Platelet or CAR-T
dendritic cell NZ-1 Cell

cD3g
4-1BB

CD28

m
=
=
o
(=]
@
=
o
g
00000 A \ o
g
N
iZ
SE
PRA s ‘_OEHMprmeins ‘2
— 3
oo \_)_‘\/_ m Rho GTPases gt
w
\'O ROCK 3

FIGURE 1 Podoplanin (PDPN) structure and targeting agents.
PDPN contains an extracellular region, transmembrane domain, and
intracellular (IC) tail. CLEC-2 interacts with PLAG domains in the
extracellular region to induce inflammation and tumor progression,
and this interaction can be blocked by antibodies, including 8.1.1,
NZ-1, MS-1 and cancer-specific PDPN antibodies (CasMabs), as well
as compounds exemplified by the small synthetic molecule 2CP.
Antibodies can also target PDPN in order to inhibit transformed cell
growth and motility directly, or can be incorporated into CAR-T
cells. Lectins exemplified by MASL can also target PDPN to inhibit
tumor progression and inflammation. protein kinase A (PKA) and
cyclin dependent kinase 5 (CDKS5) can phosphorylate serines on the
intracellular tail to inhibit cell migration, presumably by blocking
binding of ERM proteins that would otherwise lead to the activation
of Rho GTPases and Rho-associated coiled-coil kinase (ROCK)

expression correlates with decreased 5-year survival rates of patients
with these cancers.'® Moreover, PDPN expression in precancerous
oral lesions (eg oral leukoplakias) correlates with a 3-fold increase in
their transformation into malignancies compared to lesions without
PDPN expression.*?

In addition to cancer cells, PDPN expression can be found in
cancer associated fibroblasts (CAF).2%2 For example, immunohisto-
chemistry found PDPN expression in tumor cells from 38 out of 55
melanoma patients (69.1%). Podoplanin expression in CAF was
observed in 25 of these patients (45.5%), including the 11 patients
(44.0% with PDPN-positive CAF) with sentinel lymph node (SLN)
metastasis. In contrast, only 4 of 30 (13.3%) patients without PDPN
expression on CAF exhibited SLN metastasis. Furthermore, patients
with PDPN-positive CAF experienced lower disease-free survival
than those with PDPN-negative CAF (P = .0148).%°

Tumor initiating cells

Podoplanin

ROCK signal
activated

Cell death

FIGURE 2 Podoplanin (PDPN) expression induces Rho-associated
coiled-coil kinase (ROCK) activity to promote squamous cell
carcinoma survival and colony expansion

In addition to histology and other standard techniques, a circulat-
ing tumor cell (CTC) chip is being developed as a blood-based mar-
ker to detect cancer. CTC are tumor cells shed from primary tumors,
circulate in peripheral blood as surrogates of distant metastasis, and
can be used to detect malignancies. CTC chips made of resin coated
with PDPN antibodies are being developed as a microfluidic device
to capture and detect CTC from metastatic cancers. For example,
this technology has been used to capture and detect malignant pleu-
ral mesothelioma cells in preclinical models.

PDPN expression has been found in tumor cells as well as peri-
tumoral basal keratinocytes which correlated with aggressive behav-
jor in patients with extramammary Paget’s disease (EMPD).2* PDPN
expression in peritumoral basal keratinocytes was found in 25 out of
37 patients (67.6%) with EMPD. Half (50%) of in situ EMPD cases (9
in 18) exhibited PDPN-positive keratinocytes, whereas 84.2% (16 in
19) of invasive EMPD cases demonstrated positive staining for
PDPN (P < .05). PDPN expression in peritumoral keratinocytes was
also associated with tumor thickness (P < .005). By immunohisto-
chemical analysis, PDPN-positive peritumoral keratinocytes were
found to be negative for E-cadherin, one of the major adhesion
molecules of keratinocytes, which might contribute to tumor inva-
sion into the dermis through a crack in the basal cell layer induced
by downregulation of cell adhesion therein.?

Model systems are being developed to delineate how PDPN and
cadherins affect each other to control tumor invasion and other
events that rely on cell motility. For example, downregulation of
PDPN expression by siRNA inhibits the migration of normal human
epidermal keratinocytes (NHEK). This is consistent with PDPN play-
ing a key role in this keratinocyte motility and wound healing. Inter-
estingly, PDPN downregulation caused an increase in E-Cadherin
expression, suggesting that PDPN induces NHEK migration coupled
with a loss of E-cadherin. Accordingly, platelets, which express the
PDPN ligand CLEC-2, inhibit keratinocyte migration. Furthermore,
CLEC-2 protein itself induces E-cadherin expression, downregulates
RhoA GTPase and suppresses NHEK cell migration. Taken together,
these data suggest that PDPN interacts with CLEC-2 to modulate E-
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cadherin expression and RhoA activity to regulate keratinocyte
migration during wound healing. These results also suggest that
PDPN on keratinocytes associates with CLEC-2 on platelets and
delays re-epithelialization until wound bed preparation is completed

during wound healing.??

3 | THE PODOPLANIN EXTRACELLULAR
DOMAIN AS A THERAPEUTIC TARGET

Preclinical studies indicate that PDPN can be targeted to combat
cancer. For example, CAR-T cells, antibodies and lectins that target

23,24

PDPN can inhibit the growth and progression of glioma, oral

1725 mesothelioma?® and melanoma?’ in

squamous cell carcinoma,
animal models. PDPN binds with CLEC-2 on platelets in the blood-
stream to facilitate tumor embolism and hematogenous metastasis
(Figure 1).28** Thus, PDPN-CLEC-2 interaction offers a unique
opportunity to develop anticancer strategies.>>”

Antibodies can be utilized to disrupt PDPN-CLEC-2 interac-
tion.®¢*® For example, the NZ-1 antibody, its derivatives (eg NZ-8,
NZ-12) and other antibodies (eg MS-1) which bind to the ectopic
PLAG domain of PDPN (Figure 1) can decrease tumor load in xeno-
graft models of glioma,®¢ mesothelioma®? and lung cancer.?*° Work
with patient derived xenograft and metastasis models indicate that
PDPN-CLEC-2 interaction induces platelet aggregation that pro-
motes the extravasation step of metastasis.** This process is
enhanced by growth factors and cytokines released from activated
platelets during hemostasis. These factors are exemplified by TGFp,
which is released during platelet aggregation induced by PDPN on
bladder squamous cell carcinoma (eg UM-UC-5) cells. Lung metasta-
sis of these cells can be suppressed by intravenously injected admin-
istration of monoclonal antibodies specific for PDPN or TGF-f.

The generality of this pathway is confirmed by analysis of lung
squamous cell carcinoma cells. Although PDPN expression may

34 it can be found in over 60% of

change over time in cell culture,
lung squamous cell carcinoma cells produced from fresh clinical sam-
ples. As with bladder carcinoma, xenograft models of these cells also
show TGFp released during PDPN-induced platelet aggregation, with
lung metastasis suppressed by the administration of antibodies speci-
fic for PDPN. In addition to TGFp signaling, some lung squamous cell
carcinoma cells (eg PC-10) also implicate EGFR activation by plate-
let-derived growth factors induced by PDPN binding. This effect is
suppressed by the administration of PDPN antibodies or the EGFR
kinase blocker ertlotinib along with suppression of PC-10 tumor
growth in vitro and in xenograft mouse models.*?

In addition to antibodies, synthetic compounds are being devel-
oped to block PDPN-CLEC-2 interactions. For example, a derivative
of 4-O-benzoyl-3-methoxy-beta-nitrostyrene (BMNS), compound
“2CP,"” effectively suppresses PDPN-mediated platelet aggregation
and tumor cell-induced platelet activation.3 2CP specifically binds to
CLEC-2 and interacts with critical positions (Asn105, Argl07,
Phel16, Arg118 and Argl57) to inhibit its binding to PDPN, as
shown in Figure 1.2343 As the first defined CLEC-2 antagonist, 2CP

Cancer SciencepUIIaeEs

not only possesses anti-cancer metastatic activity but also enlarges
the therapeutic efficacy of cisplatin while decreasing the risk of
bleeding in experimental metastasis models.

Interactions between PDPN and CLEC-2 can also be blocked to
modulate the inflammatory response in sepsis, which is often associ-
ated with cancer progression and treatments. Indeed, sepsis is a life-
threatening, severe systemic inflammatory response associated with
multiple organ failure and death, which affects over 19 million
patients annually.***> Thrombocytopenia is common in sepsis and
severe thrombocytopenia is associated with poor outcome in septic
patients and mice.***® Platelets are now recognized as critical
immunomodulators affecting immune cell recruitment, releasing
cytokines and chemokines and trapping bacteria.*’ Platelet depletion
or inhibition of platelet activation results in a decrease in survival
from sepsis.**°° Moreover, platelets maintain vascular integrity at
the site of inflammation through the PDPN and collagen/fibrin
receptors, CLEC-2 and glycoprotein VI (GPVI), respectively.’1>% In
sepsis, platelet interaction with inflammatory macrophages dampens
macrophages pro-inflammatory phenotype and decrease the secre-
tion of TNF-0.°° Recent studies indicate that platelet CLEC-2 inter-
action with PDPN on inflammatory macrophages regulates the
immune response in a mouse model of sepsis, cecal ligation and
puncture (CLP). Platelet deletion of CLEC-2 or PDPN-deficient
hematopoietic cells increased the clinical severity of sepsis associ-
ated with enhanced systemic inflammation and accelerated organ
injury. Deletion of CLEC-2 from platelets or PDPN from macro-
phages potentiates the cytokine storm and reduces PDPN expressing
inflammatory macrophage migration to the infected peritoneum. In
addition, pharmacological inhibition of the CLEC-2-PDPN axis inhi-
bits immune cells infiltrate at the site of infection and regulates their
inflammatory phenotype.>* These observations identify PDPN as a
novel anti-inflammatory target regulating immune cell recruitment
and activation in sepsis.

In addition to antibodies and synthetic molecules, lectins may be

used to target PDPN on transformed cells. For example, Maackia

P172

Phosphorylated Unphosphorylated

FIGURE 3 Predicted structural conformation of the intracellular
domain of mouse podoplanin (PDPN) in the phosphorylated and
unphosphorylated states. The intracellular domain of PDPN contains
serine residues (yellow) that can be modified to affect cell motility.
Least energy structural conformation calculated by PEP-FOLD
predicts an alteration in the orientation of an intracellular
phenylalanine residue (blue) that correlates with decreased cell
migration
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Amurensis seed lectin (MASL) binds to PDPN on melanoma and oral
squamous cell carcinoma cells to inhibit their motility and growth
in vitro and in syngeneic and xenograft mouse models (Figure 1).
Interestingly, both MASL and NZ-1 antibody decrease tumor cell
migration at nanomolar concentrations, apparently by inhibiting
Cdc42 GTPase activity, and kill cells by nonapoptotic caspase inde-

pendent necrosis at higher micromolar concentrations.*”2”

4 | TARGETING THE INTRACELLULAR
PODOPLANIN DOMAIN

The intracellular domain of PDPN contains only 10 amino acids,
including basic amino acids such as lysines and arginines. These basic
amino acids act as binding sites for the ezrin family proteins. Upon
binding to the intracellular domain of PDPN, the ezrin family pro-
teins modulate Rho GTPases and reorganize the actin cytoskeleton
to promote cell migration, as shown in Figure 1.5

In addition to basic amino acids, the intracellular domain of
PDPN also contains 2 conserved serine residues, which were long
considered to be putative phosphorylation sites.*>**%” The func-
tional relevance of these serine residues was elucidated by mutagen-
esis and cell motility experiments. Interestingly, phosphorylation of
serines inhibits PDPN-mediated cell migration. Furthermore, both
serines need to be phosphorylated to inhibit cell migration.**® Phos-
phorylation can modify the structural conformation of amino acids in
the PDPN intracellular domain, as shown in Figure 3.

The kinases that can phosphorylate PDPN cytoplasmic serine
residues were identified as protein kinase A (PKA) and cyclin-depen-
dent kinase 5 (CDK5), as shown in Figure 1. While PKA can phos-
phorylate either of the 2 serines (5167 or S171 in mouse PDPN),
CDK5 preferably phosphorylates the C-terminal serine (S171 in
mouse PDPN).* These data suggest a scenario in which PKA and
CDK5 work together to phosphorylate the intracellular serines of
PDPN in order to inhibit cell motility. Reagents that can induce
PDPN phosphorylation may be used to inhibit tumor motility. For

(B)
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3
(1]
= 0.6
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example, 8-br-cAMP, disulfiram and CARP-1 functional mimetics
have been shown to induce PDPN phosphorylation and inhibit
PDPN-mediated cell migration.**?° Thus, PDPN may be targeted
both on its intracellular domain as well as its extracellular domain to

inhibit cell migration.

5 | PODOPLANIN CAR-T CELLS

CAR-T cells targeting PDPN are being developed to treat cancer.
This is exemplified by recent work focused on glioblastoma. Glioblas-
toma (GBM) is the most common and lethal primary malignant brain
tumor in adults, with a 5-year overall survival rate of less than
10%.%*

Chimeric antigen receptors (CAR) consist of an extracellular
domain derived from a single-chain variable fragment (scFv) taken
from a tumor antigen-specific monoclonal antibody (mAb), a trans-
membrane domain, and a cytoplasmic signaling domain CD3( chain
(CD3Y) derived from the T-cell receptor complex.®? CAR-transduced
T cells can recognize predefined tumor surface antigens independent
of major histocompatibility complex (MHC) restriction, which is often
downregulated in gliomas.®® Third generation CAR, that include 2
costimulatory domains such as CD28 and 4-1BB (CD137), have been
described and are highly likely to lyse tumor cells.*

Several CAR have been generated against antigens expressed
in GBM, including epidermal growth factor receptor variant IlI
(EGFRVII), human epidermal growth factor receptor 2 (HER?2),
interleukin-13 receptor alpha 2 (IL13R«2), and, as described here,
PDPN.?* In particular, a lentiviral vector has been constructed with
the EF1la promoter followed by the leader sequence, NZ-1 PDPN
antibody-based scFv, CD28, 4-1BB and CD3(. The lentiviral vector
was used to infect human T cells. A calcein-based nonradioisotope
cytotoxic assay indicated that PDPN-positive LN319 cells and
U87MG glioma cells were lysed by these NZ-1-CAR-T cells in an
effector/target (E/T) ratio-dependent manner.?* In contrast, specific

lysis was not observed against PDPN-knockout (KO)-glioma cells.

- PBS
— Mock-CAR

= PDPN-CAR

Log-rank
P=.035

80 100 FIGURE 4 CAR-T cells targeting
podoplanin (PDPN) inhibit glioblastoma
progression in orthotopic xenograft mice.
(A) Post-treatment MRI. (B) 60% of the
mice treated with NZ-1 CAR-T were cured
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In addition, NZ-1-CAR-T cells co-cultured with PDPN expressing
glioma cells released significantly more IFNy than mock-transduced
T cells.?*

An intracranial glioma xenograft model was used to examine the
distribution and anti-tumor effect of NZ-1-CAR-T cells.?* To this
end, glioma cells were stereotactically implanted into an immunodefi-
cient mouse brain. Seven days after tumor implantation, NZ-1-CAR-
T cells or mock-transduced T cells were infused intravenously via
the tail vein. The non-treated mice were infused with PBS alone,
and intracranial tumor growth was evaluated by 3T-MRI. In approxi-
mately 60% of the mice treated with NZ-1-CAR-T cells, tumors grew
markedly slower and the mice survived significantly longer than con-
trol groups, as shown in Figure 4. Taken together, these data indi-
cate that functionally active NZ-1-CAR-T cells recognize PDPN to

inhibit glioma cell growth and tumor progression.

6 | CONCLUSIONS AND FUTURE
PERSPECTIVES

Cancer is extremely complex and heterogeneous, in which the
underlying factors are often poorly understood at the level of indi-
vidual patients. PDPN is expressed by many types of tumor cells and
CAF. Moreover, high levels of PDPN expression is associated with
reduced survival and cancer aggression. PDPN has clear potential as
a cancer biomarker and therapeutic target. These therapies include a
variety of compounds, biologics, antisera and CAR-T cells as summa-
rized in Figure 1.

One concern with PDPN CAR-T therapy arises from nonspecific
lysis of normal cells that express PDPN, including lymphatic
endothelium and type | lung alveolar cells. Cancer-specific mono-
clonal antibodies (CasMabs) have been generated to address this
concern. These PDPN CasMabs react with PDPN expressed by can-
cer cells, but not normal cells.®® These should be extremely useful
reagents to produce very specific CAR-T therapies that target PDPN
to combat glioma and other cancers.

As with most other anticancer therapies, it is important to
understand which patients are likely to benefit from anti-PDPN
treatments, such that each patients’ therapeutic program can be
tailored to their specific disease. Histopathological examination,
often supported by clinical imaging (MRI or CT) and findings dur-
ing surgery can be used to classify PDPN in patient tumors. How-
ever, direct, functional assessment of drug responses on primary
patient-derived tumor cells gives the most accurate information on
whether the patient will respond to the tested drugs. For example,
zebrafish tumor xenograft platforms allow human tumor samples
to be grafted into zebrafish embryos, where their growth as pri-
mary tumors and their dissemination to distal regions can be
determined in the presence or absence of drugs.®®*® This platform
has been used to demonstrate efficacy of the anti-PDPN com-
pounds, including MASL on oral squamous cell carcinoma and mel-
anoma xenografts.'”?” This approach can be used to gather

Cancer SciencepUIIaeE

critical information that can be reported back to oncologists in

charge of treatment planning in less than 5 days after surgery.
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