
Rowan University
Rowan Digital Works
School of Osteopathic Medicine Faculty
Scholarship School of Osteopathic Medicine

7-1-2015

PKA and CDK5 Can Phosphorylate Specific
Serines on the Intracellular Domain of Podoplanin
(PDPN) to Inhibit Cell Motility.
Harini Krishnan
Rowan University School of Osteopathic Medicine

Edward Retzbach
Rowan University School of Osteopathic Medicine

Maria Ramirez
Boston University

Tong Liu
Rutgers University

Hong Li
Rutgers University

See next page for additional authors
Let us know how access to this document benefits you - share your
thoughts on our feedback form.
Follow this and additional works at: https://rdw.rowan.edu/som_facpub

Part of the Biochemistry Commons, Biology Commons, Cell Biology Commons, and the
Molecular Biology Commons

This Article is brought to you for free and open access by the School of Osteopathic Medicine at Rowan Digital Works. It has been accepted for
inclusion in School of Osteopathic Medicine Faculty Scholarship by an authorized administrator of Rowan Digital Works. For more information, please
contact jiras@rowan.edu, rdw@rowan.edu.

Recommended Citation
Krishnan, Harini; Retzbach, Edward; Ramirez, Maria; Liu, Tong; Li, Hong; Miller, W.; and Goldberg, Gary, "PKA and CDK5 Can
Phosphorylate Specific Serines on the Intracellular Domain of Podoplanin (PDPN) to Inhibit Cell Motility." (2015). School of
Osteopathic Medicine Faculty Scholarship. 76.
https://rdw.rowan.edu/som_facpub/76

https://rdw.rowan.edu?utm_source=rdw.rowan.edu%2Fsom_facpub%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
https://rdw.rowan.edu/som_facpub?utm_source=rdw.rowan.edu%2Fsom_facpub%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
https://rdw.rowan.edu/som_facpub?utm_source=rdw.rowan.edu%2Fsom_facpub%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
https://rdw.rowan.edu/som?utm_source=rdw.rowan.edu%2Fsom_facpub%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.lib.rowan.edu/rdw-feedback?ref=https://rdw.rowan.edu/som_facpub/76
https://www.lib.rowan.edu/rdw-feedback?ref=https://rdw.rowan.edu/som_facpub/76
https://rdw.rowan.edu/som_facpub?utm_source=rdw.rowan.edu%2Fsom_facpub%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/2?utm_source=rdw.rowan.edu%2Fsom_facpub%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=rdw.rowan.edu%2Fsom_facpub%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/10?utm_source=rdw.rowan.edu%2Fsom_facpub%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/5?utm_source=rdw.rowan.edu%2Fsom_facpub%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
https://rdw.rowan.edu/som_facpub/76?utm_source=rdw.rowan.edu%2Fsom_facpub%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jiras@rowan.edu,%20rdw@rowan.edu


Authors
Harini Krishnan, Edward Retzbach, Maria Ramirez, Tong Liu, Hong Li, W. Miller, and Gary Goldberg

This article is available at Rowan Digital Works: https://rdw.rowan.edu/som_facpub/76

https://rdw.rowan.edu/som_facpub/76?utm_source=rdw.rowan.edu%2Fsom_facpub%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages


PKA and CDK5 can phosphorylate specific serines on the 
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Abstract

Podoplanin (PDPN) is a transmembrane glycoprotein that promotes tumor cell migration, 

invasion, and cancer metastasis. In fact, PDPN expression is induced in many types of cancer. 

Thus, PDPN has emerged as a functionally relevant cancer biomarker and chemotherapeutic 

target. PDPN contains 2 intracellular serine residues that are conserved between species ranging 

from mouse to humans. Recent studies indicate that protein kinase A (PKA) can phosphorylate 

PDPN in order to inhibit cell migration. However, the number and identification of specific 

residues phosphorylated by PKA have not been defined. In addition, roles of other kinases that 

may phosphorylate PDPN to control cell migration have not been investigated. We report here that 

cyclin dependent kinase 5 (CDK5) can phosphorylate PDPN in addition to PKA. Moreover, 

results from this study indicate that PKA and CDK5 cooperate to phosphorylate PDPN on both 

intracellular serine residues to decrease cell motility. These results provide new insight into PDPN 

phosphorylation dynamics and the role of PDPN in cell motility. Understanding novel 

mechanisms of PDPN intracellular signaling could assist with designing novel targeted 

chemotherapeutic agents and procedures.
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Introduction

Podoplanin (PDPN) is a unique transmembrane receptor glycoprotein. Tumor promoters 

including TPA [1], RAS [2], TGF-β1, IFN-γ [3], EGFR [4], and Src [5] induce PDPN 

expression. PDPN regulates the activities of Rho, ezrin, and other proteins linked to the actin 

cytoskeleton to mediate filopodia formation, cell motility, invasion, and metastasis [6, 7].

PDPN expression is critical for embryonic development, and is upregulated in many types of 

cancer [6, 8–10]. For example, PDPN promotes the motility and invasion of many 

transformed cell types including mammary carcinoma [6, 11], glioma [12], and oral 

squamous carcinoma cells [13–15]. PDPN is also expressed by lymphatic endothelial cells 

[16, 17] and cancer associated fibroblasts [18–20] which can augment tumor invasion and 

metastasis [19, 21, 22].

PDPN can serve as a functionally relevant tumor biomarker, and is an enticing 

chemotherapeutic target. Indeed, the extracellular domain of PDPN can be targeted by 

antibodies and specific lectins to suppress tumor cell growth and migration [15, 23–28]. 

However, signaling events mediated by the intracellular domain of PDPN may also 

illuminate mechanisms leading to cell motility and pathways to chemotherapy that have not 

been explored.

The PDPN intracellular domain consists of about 10 amino acids that direct interactions with 

ERM proteins to affect the actin cytoskeleton [29]. This domain contains 2 conserved serine 

residues that can be phosphorylated to decrease PDPN mediated cell migration [18]. 

However, specific kinases that phosphorylate these individual serine residues, and how these 

phosphorylation events affect cell migration, have not been clearly elucidated. Here, we 

present data indicating that PKA and CDK5 kinases cooperate to phosphorylate both serines 

in the intracellular tail of PDPN in order to decrease cell motility.

Materials and Methods

Immunoprecipitation and Western blot analysis

Cells were lysed in RIPA buffer (50mM Tris-HCl pH 7.4, 1% NP-40, 2.5mM sodium 

pyrophosphate, 150mM sodium chloride, 1mm EDTA, 1mM EGTA, 1mM sodium 

betaglycerophosphate, 1mM sodium orthovanadate, 50mM sodium fluoride, 1mM PMSF, 

10µg/mL protease inhibitor cocktail) and clarified by centrifugation at 20000 g for 5 

minutes. Lysates containing 5mg of protein were incubated with phosphoserine antibody 

16B4 (Enzo ALX-804-167-C100) [30, 31] for 3h at 4°C followed by protein-L beads (Santa 

Cruz 2336) for 1.5h at 4°C. Immune complexes were washed four times with ice-cold PBS 

supplemented with 1mM sodium orthovanadate, 50mM sodium fluoride, 1mM PMSF, and 

10µg/mL protease inhibitor cocktail, eluted in sample buffer, resolved on 12% SDS-PAGE 

gels, and transferred to Immobilon-P membranes (Millipore IH1079562, Billerica, MA, 

USA). Western blotting was performed with antisera specific for PDPN [18], GAPDH 

(Santa Cruz Biotechnology A1978, Santa Cruz, CA, USA), or β-actin (Sigma A1978, St. 

Louis, MO, USA), and recognized by appropriate secondary antiserum conjugated to 

Krishnan et al. Page 2

Exp Cell Res. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



horseradish peroxidase and detected using enhanced chemiluminescence (Thermoscientific 

32106, Philadelphia, PA, USA) as described previously [5, 18, 25]. Membranes were stained 

with India ink to verify equal loading and transfer after blotting.

Kinase assays

A phosphocellulose paper binding assay was used to measure phosphorylation of the peptide 

VVMKKISGRFSP (>95% purity, synthesized by GenScript USA Inc., Piscataway, NJ, 

USA), containing the entire intracellular region of PDPN (residues 161–172) as described 

[18]. Reaction mixtures contained 700 µM peptide in 20 mM Tris-HCl (pH 7.5), 10 mM 

MgCl2, 1 mg/ml bovine serum albumin, 0.25 mM ATP, and [γ-32P]-ATP (100 cpm/pmol). 

Reactions were initiated by adding 80 µg/ml PKA (Promega V5161, Madison, WI, USA), 22 

µg/ml CDK5/p25 kinase enzyme (Promega V3231, Madison, WI, USA), or both PKA and 

CDK5/p25. Reactions were quenched after 10 minutes by the addition of 10% 

trichloroacetic acid, spotted onto P81 phosphocellulose filters, washed 3 times with 0.5% 

phosphoric acid, and analyzed by scintillation counting to determine picomoles of phosphate 

transferred. For mass spectrometry analysis, the kinase assay reactions contained 700 µM 

PDPN peptide in 30mM Tris-HCl (pH 7.5), 20 mM MgCl2, 1 mg/ml bovine serum albumin 

and 0.40 mM ATP.

Mass spectrometry

Peptide was purified (Millipore UFC501096 Carrigtwohill, Ireland) from kinase reactions 

and desalted (Millipore ZTC18M960, Billerica, MA, USA) according to manufacturer’s 

instructions. Peptide was then subjected to LC-MS/MS analysis on an Ultimate 3000 liquid 

chromatography (LC) system coupled with an Orbitrap Velos tandem mass spectrometry 

(MS/MS) instrument (Thermo Fisher Scientific, Philadelphia, PA, USA). Resulting MS/MS 

spectra were searched against a database containing PDPN peptide sequence using a local 

Mascot search engine (V.2.3). Methionine oxidation and serine/threonine phosphorylation 

were set as variable modifications in search parameters. Phosphopeptide sequence and 

phosphorylation sites were manually confirmed based on y- and b-ion series fragments.

Generation of mutant Pdpn cell lines

Pdpn single mutant constructs were produced with the QuikChange II XL Site-Directed 

Mutagenesis Kit according to the manufacturer’s protocol (Stratagene 200521, La Jolla, CA, 

USA). The vector pEF4Pdpn, encoding full length wild type mouse PDPN (PdpnWT) [18], 

was used as a template. PdpnSer167Ala, encoding PDPN with non-phosphorylatable serine 

at position 167 (PdpnS167A) was generated with the complementary primer pairs 

5’GTTGTTATGAAGAAGATTGCTGGAAGGTTCTCGCC3’, 

5’GGCGAGAACCTTCCAGCAATCTTCTTCATAACAAC3’ followed by 

5’GGTTCTCGCCCTAAAGAGGGCCCTTCGAAGG3’, 

5’CCTTCGAAGGGCCCTCTTTAGGGCGAGAACC3’. PdpnSer167Asp, encoding PDPN 

with serine 167 mutated to phosphomimetic aspartate (PdpnS167D), was generated with the 

complementary primers 

5’GTTATGAAGAAGATTGATGGAAGGTTCTCGCCCTAAAGAGC3’, 

5’GCTCTTTAGGGCGAGAACCTTCCATCAATCTTCTTCATAAC3’. PdpnSer171Ala, 

encoding PDPN with non-phosphorylatable serine at position 171 (PdpnS171A), was 
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generated with the complementary primers 

5’TGGAAGGTTCGCGCCCTAAAGAGGGCCCTTCGAAGG3’, 

5’CCTTCGAAGGGCCCTCTTTAGGGCGCGAACCTTCCA3’. PdpnSer171Asp, 

encoding PDPN with serine 171 mutated to phosphomimetic aspartate (PdpnS171D), was 

generated with the complementary primers 

5’TGGAAGGTTCGACCCCTAAAGAGGGCCCTTCGAAGG3’, 

5’CCTTCGAAGGGCCCTCTTTAGGGGTCGAACCTTCCA3’. All constructs were 

verified by sequencing. PdpnKo cells were stably transfected with PdpnS167A, PdpnS167D, 

PdpnS171A or PdpnS171D constructs and maintained in DMEM supplemented with 10% 

FBS as described [18]. Cells were cotransfected with PDPN constructs subcloned into 

pEF4Zeo, as well as pBabePuro, and selected for growth in both zeocin and puromycin, to 

achieve very high transfection efficiencies without taking clones as previously described [5, 

18, 32–34]. Clones were not taken to minimize potential effects of clonal variation, and 

experiments were done in parallel to control for differences in serum effects and other 

environmental factors between experiments.

Evaluation of cell migration

500,000 cells were seeded in each well of 12-well cluster plates (CytoOne CC7682-7512, 

Ocala, FL), allowed to form a monolayer, scratched at the center to create a wound, and 

migration was quantitated as the number of cells that entered a field of 400 × 400 micron in 

the center of the wound at 18 hours as previously described [5, 18, 25]. Data were taken 

from three representative experiments (n=3) with 5 fields per experiment. For some 

experiments, cells were treated with 20 µM PKA inhibitor H-89 (Calbiochem 371963) or 0.1 

µM CDK5 inhibitor Roscovitine (Calbiochem 557360) immediately after wounding.

Statistical analysis

Statistical analyses were performed using Prism (version 5, GraphPad Software).

Results

PKA and CDK5 phosphorylate the intracellular domain of PDPN

We generated cells from homozygous null PDPN knockout mice, called PdpnKo cells [18]. 

These cells serve as a clear foundation on which to examine the effects of specific PDPN 

isoforms and modifications on cell behavior. For example, as shown in Figure 1a, PDPN can 

be immunoprecipitated from these cells with phosphoserine antiserum, and then detected by 

Western blotting to demonstrate that it is phosphorylated by serine kinases in vivo.

The intracellular domain of PDPN contains 2 conserved serine residues. These serines are 

located at residues 167 and 171 in mouse PDPN, corresponding to serines 157 and 161 in 

human PDPN. We thus sought to identify which of these serines is phosphorylated to affect 

PDPN signaling events.

Kinase specific phosphorylation sites on PDPN intracellular domain were predicted using 

the ExPASy NetPhosK server. These analyses identified PKA and CDK5 as ideal candidates 

for kinases that phosphorylate the intracellular serines of PDPN. Therefore, a peptide 
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corresponding to the entire intracellular domain of PDPN was used as a substrate to evaluate 

the ability of PKA and CDK5 to phosphorylate these serine residues. As shown in Figure 1b, 

PKA transferred about 60 pmol of phosphates to the PDPN peptide in 10 minutes. These 

data are consistent with previous studies indicating that PKA can phosphorylate PDPN 

intracellular serines [18].

In addition to PKA, CDK5 also transferred about 40 pmol of phosphate to the PDPN peptide 

in 10 minutes (Figure 1b). Interestingly, simultaneous incubation with PKA and CDK5 

resulted in approximately 100 pmol of phosphate to the PDPN peptide in 10 minutes (Figure 

1b). Thus, PKA and CDK5 displayed an additive effect on PDPN phosphorylation. 

Although serine 167 of PDPN has been considered to be a putative PKC phosphorylation 

site [13], we did not detect PDPN peptide phosphorylation by PKC (data not shown).

PKA phosphorylates PDPN on S167 or S171, while CDK5 preferentially phosphorylates 
S171

We performed LC-MS/MS analysis of the PDPN peptide from in vitro kinase assays in 

order to determine which PDPN residues are phosphorylated by PKA and CDK5. As shown 

in Figure 2, treatment of the peptide with PKA or CDK5 resulted in singly phosphorylated 

species, in which either S167 or S171 was modified. MS spectra detected PDPN peptides 

with phosphorylation at serine 167 (S167) or serine 171 (S171) from PKA and CDK5 

treated samples. We did not detect any PDPN peptides with phosphorylation at both S167 

and S171 residues from these reactions (Figures 2 and 3). These data indicate that each 

kinase can phosphorylate one or the other serine in a single reaction, but not both.

The percent of PDPN peptide phosphorylated at S167 or S171 was calculated from spectra 

counts to determine if PKA and CDK5 preferentially phosphorylate specific serine residues. 

As shown in Figure 3, PKA phosphorylated PDPN on S167 or S171 equally well. However, 

CDK5 phosphorylated S171 four fold more than S167. These data indicate that PKA can 

phosphorylate PDPN equally well on either S167 or S171, whereas CDK5 preferentially 

phosphorylates PDPN on S171.

Both S167 and S171 residues on PDPN are phosphorylated to inhibit cell migration

We used homozygous null PDPN knockout mouse embryonic fibroblasts (PdpnKo cells) to 

evaluate how modification of each PDPN intracellular serine residue affects cell migration. 

As shown in Figure 4b, cells expressing wild-type PDPN (PdpnWT) migrated about 2 fold 

more than control PdpnKo cells transfected with empty parental vectors (PdpnEF4). 

Substitution of both intracellular serines to nonphosphorylatable alanines (PdpnAA cells) 

increased cell migration about 3 fold compared to PdpnWT cells. In contrast to cells 

expressing nonphosphorylatable PDPN, migration of cells expressing PDPN with both 

serines mutated to phosphomimetic aspartate (PdpnDD) was comparable to control 

transfectants. These data are consistent with previous studies indicating that phosphorylation 

of PDPN can decrease cell migration [18].

After examining double mutants, we generated cells expressing PDPN with single site 

mutations to examine the effects of phosphorylation of individual intracellular serine 
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residues on cell migration. PdpnKo cells were transfected with PDPN constructs with S167 

or S171 mutated to nonphosphorylatable alanine (PdpnS167A or PdpnS171A) and 

phosphomimetic constructs with these serines mutated to aspartate (PdpnS167D or 

PdpnS171D). After confirming PDPN expression by Western Blotting (Figure 4a), cell 

migration was evaluated by wound healing assays.

As shown in Figure 4b, cells expressing PDPN with either serine S167 or S171 mutated to 

alanine (PdpnS167A or Pdpn171A) migrated over twice as well as cells expressing wild 

type PDPN (PdpnWT). These data suggest that both of these serines need to be 

phosphorylated to effectively inhibit cell motility. As shown in Figure 4b, cells expressing 

any construct with a single serine of PDPN mutated to alanine or aspartate migrated 

comparably to cells expressing nonphosphorylatable PDPN - with both sites mutated to 

alanine (PdpnAA). As discussed below, these data indicate that both intracellular serines on 

PDPN are phosphorylated to decrease cell migration, and phosphomimetic residues can not 

fully compensate for these phosphorylation events.

Discussion

PDPN has emerged as a functionally relevant tumor biomarker and chemotherapeutic target 

[25, 35, 36]. Several ligands can bind to the extracellular region of PDPN to promote 

transformed cell migration and tumorigenesis [37–40]. Accordingly, this extracellular region 

can be targeted by reagents to inhibit tumor cell growth and motility [15, 25, 27, 28].

Regardless of extracellular signals, the intracellular region of PDPN must also direct events 

that affect cell migration. The two conserved serine residues in the short PDPN intracellular 

tail present a clear potential for biological relevance. Results from studies presented here 

indicate that phosphorylation of either serine in the PDPN tail is not sufficient to inhibit cell 

migration; they both need to be phosphorylated to inhibit cell motility.

Interestingly, PdpnWT cells treated with a PKA inhibitor migrated about 50% more than 

control cells, while CDK5 inhibition decreased cell migration by about 50% (Supplemental 

Figure 1). However, CDK5 regulates cell proliferation and morphology in addition to 

migration, and these pleiotropic effects may cause toxicities that prohibit cell motility in 

manners unrelated to PDPN signaling [41–43]. In addition, cells expressing phosphomimetic 

PDPN constructs with either intracellular serine mutated to aspartate (PdpnS167D or 

Pdpn171D) migrated twice as well as cells with wild type PDPN. Clearly, these 

phosphomimetic mutations do not reproduce PDPN modifications that result from 

phosphorylation events. These data are consistent with studies indicating that phosphate 

residues affect protein function in many ways, including alterations to potential adaptor 

binding sites and changes to the overall chemical environment that are not accomplished by 

changes of serines to aspartate or glutamate residues [44–46].

Taken together, these results suggest a scenario, outlined in Figure 6, in which PKA and 

CDK5 phosphorylate PDPN S167 or S171, respectively, in order to decrease cell motility. 

Previous studies found that PKA can phosphorylate PDPN on one or both intracellular 

serines to decrease cell migration [18]. Here, we show that both serines need to be 
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phosphorylated in order to decrease cell migration. Moreover, these data indicate that PKA 

can phosphorylate PDPN on either serine, while CDK5 appears to phosphorylate S171. 

Therefore, a coordinated effort by unrelated kinases is required to phosphorylate PDPN in 

order to inhibit cell motility.

Identification of PKA and CDK5 as kinases that phosphorylate specific residues on PDPN to 

affect cell migration should help elucidate mechanisms that control processes including 

embryonic development, tumorigenesis, and chemotherapeutic treatments. For example, 

chemotherapeutic agents such as disulfiram and CARP-1 functional mimetics have recently 

been found to induce PDPN phosphorylation. Moreover, PDPN phosphorylation induced by 

these anticancer reagents leads to PDPN degradation and mesothelioma cell growth 

inhibition [31, 47]. Further elucidation of how PDPN phosphorylation controls cell growth 

and motility should yield fundamental insights into many important biological and 

biomedical processes.
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Acknowledgements

This work was funded in part by support from the Foundation of UMDNJ, the Osteopathic Heritage Foundation, 
and the Northarvest Bean Growers Association to G.S.G., National Institutes of Health Grant R01 CA 58530 to 
W.T.M, and HL 083034 to M.I.R. Mass spectrometry data were obtained from a Q-Exactive MS instrument funded 
in part by NIH Grant NS 046593 for the support of the Rutgers Neuroproteomics Core Facility.

Abbreviations

PDPN Podoplanin

PKA Protein Kinase A

CDK5 Cyclin dependent Kinase 5

References

1. Nose K, Saito H, Kuroki T. Isolation of a gene sequence induced later by tumor-promoting 12-O-
tetradecanoylphorbol-13-acetate in mouse osteoblastic cells (MC3T3-E1) and expressed 
constitutively in ras-transformed cells. Cell Growth Differ. 1990; 1:511–518. [PubMed: 2088477] 

2. Gandarillas A, Scholl FG, Benito N, Gamallo C, Quintanilla M. Induction of PA2.26, a cell-surface 
antigen expressed by active fibroblasts, in mouse epidermal keratinocytes during carcinogenesis. 
Mol. Carcinog. 1997; 20:10–18. [PubMed: 9328432] 

3. Honma M, Minami-Hori M, Takahashi H, Iizuka H. Podoplanin expression in wound and 
hyperproliferative psoriatic epidermis: Regulation by TGF-beta and STAT-3 activating cytokines, 
IFN-gamma, IL-6, and IL-22. J. Dermatol. Sci. 2012; 65:134–140. [PubMed: 22189341] 

4. Fujii M, Honma M, Takahashi H, Ishida-Yamamoto A, Iizuka H. Intercellular contact augments 
epidermal growth factor receptor (EGFR) and signal transducer and activator of transcription 3 
(STAT3)-activation which increases podoplanin-expression in order to promote squamous cell 
carcinoma motility. Cellular signalling. 2013; 25:760–765. [PubMed: 23266472] 

5. Shen Y, Chen CS, Ichikawa H, Goldberg GS. SRC induces podoplanin expression to promote cell 
migration. J. Biol. Chem. 2010; 285:9649–9656. [PubMed: 20123990] 

Krishnan et al. Page 7

Exp Cell Res. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6. Wicki A, Christofori G. The potential role of podoplanin in tumour invasion. Br. J. Cancer. 2007; 
96:1–5. [PubMed: 17179989] 

7. Yu Y, Khan J, Khanna C, Helman L, Meltzer PS, Merlino G. Expression profiling identifies the 
cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators. 
Nat. Med. 2004; 10:175–181. [PubMed: 14704789] 

8. Astarita JL, Acton SE, Turley SJ. Podoplanin: emerging functions in development, the immune 
system, and cancer. Front Immunol. 2012; 3:283. [PubMed: 22988448] 

9. Raica M, Cimpean AM, Ribatti D. The role of podoplanin in tumor progression and metastasis. 
Anticancer Res. 2008; 28:2997–3006. [PubMed: 19031946] 

10. Ramirez MI, Millien G, Hinds A, Cao Y, Seldin DC, Williams MC. T1alpha, a lung type I cell 
differentiation gene, is required for normal lung cell proliferation and alveolus formation at birth. 
Dev. Biol. 2003; 256:61–72. [PubMed: 12654292] 

11. Wicki A, Lehembre F, Wick N, Hantusch B, Kerjaschki D, Christofori G. Tumor invasion in the 
absence of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actin 
cytoskeleton. Cancer Cell. 2006; 9:261–272. [PubMed: 16616332] 

12. Cortez MA, Nicoloso MS, Shimizu M, Rossi S, Gopisetty G, Molina JR, Carlotti C Jr, Tirapelli D, 
Neder L, Brassesco MS, Scrideli CA, Tone LG, Georgescu MM, Zhang W, Puduvalli V, Calin 
GA. miR-29b and miR-125a regulate podoplanin and suppress invasion in glioblastoma. Genes 
Chromosomes. Cancer. 2010; 49:981–990. [PubMed: 20665731] 

13. Martin-Villar E, Scholl FG, Gamallo C, Yurrita MM, Munoz-Guerra M, Cruces J, Quintanilla M. 
Characterization of human PA2.26 antigen (T1alpha-2, podoplanin), a small membrane mucin 
induced in oral squamous cell carcinomas. Int. J. Cancer. 2005; 113:899–910. [PubMed: 
15515019] 

14. Tsuneki M, Yamazaki M, Maruyama S, Cheng J, Saku T. Podoplanin-mediated cell adhesion 
through extracellular matrix in oral squamous cell carcinoma. Lab Invest. 2013; 93:921–932. 
[PubMed: 23817087] 

15. Ochoa-Alvarez JA, Krishnan H, Pastorino JG, Kephart D, Lee JJ, Retzbach EP, Shen Y, 
Fatahzadeh M, Baredes S, Kalyoussef E, Honma M, Adelson ME, Kaneko MK, Kato Y, Young 
MA, Deluca-Rapone L, Shienbaum AJ, Yin K, Jensen LD, Goldberg GS. Antibody and lectin 
target podoplanin to inhibit oral squamous carcinoma cell migration and viability by distinct 
mechanisms. Oncotarget. 2015

16. Mumprecht V, Detmar M. Lymphangiogenesis and cancer metastasis. J. Cell Mol. Med. 2009; 
13:1405–1416. [PubMed: 19583813] 

17. Mohammed RA, Martin SG, Gill MS, Green AR, Paish EC, Ellis IO. Improved methods of 
detection of lymphovascular invasion demonstrate that it is the predominant method of vascular 
invasion in breast cancer and has important clinical consequences. Am. J. Surg. Pathol. 2007; 
31:1825–1833. [PubMed: 18043036] 

18. Krishnan H, Ochoa-Alvarez JA, Shen Y, Nevel E, Lakshminarayanan M, Williams MC, Ramirez 
MI, Miller WT, Goldberg GS. Serines in the intracellular tail of podoplanin (PDPN) regulate cell 
motility. The Journal of biological chemistry. 2013; 288:12215–12221. [PubMed: 23530051] 

19. Ono S, Ishii G, Nagai K, Takuwa T, Yoshida J, Nishimura M, Hishida T, Aokage K, Fujii S, Ikeda 
N, Ochiai A. Podoplanin-positive cancer-associated fibroblasts could have prognostic value 
independent of cancer cell phenotype in stage I lung squamous cell carcinoma: usefulness of 
combining analysis of both cancer cell phenotype and cancer-associated fibroblast phenotype. 
Chest. 2013; 143:963–970. [PubMed: 23081722] 

20. Ito S, Ishii G, Hoshino A, Hashimoto H, Neri S, Kuwata T, Higashi M, Nagai K, Ochiai A. Tumor 
promoting effect of podoplanin-positive fibroblasts is mediated by enhanced RhoA activity. 
Biochem. Biophys. Res. Commun. 2012; 422:194–199. [PubMed: 22575513] 

21. Neri S, Ishii G, Taira T, Hishida T, Yoshida J, Nishimura M, Nagai K, Ochiai A. Recruitment of 
podoplanin positive cancer-associated fibroblasts in metastatic lymph nodes predicts poor 
prognosis in pathological N2 stage III lung adenocarcinoma. Ann Surg Oncol. 2012; 19:3953–
3962. [PubMed: 22669451] 

Krishnan et al. Page 8

Exp Cell Res. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



22. Kan S, Konishi E, Arita T, Ikemoto C, Takenaka H, Yanagisawa A, Katoh N, Asai J. Podoplanin 
expression in cancer-associated fibroblasts predicts aggressive behavior in melanoma. J Cutan 
Pathol. 2014; 41:561–567. [PubMed: 24588302] 

23. Kato Y, Kaneko MK, Kuno A, Uchiyama N, Amano K, Chiba Y, Hasegawa Y, Hirabayashi J, 
Narimatsu H, Mishima K, Osawa M. Inhibition of tumor cell-induced platelet aggregation using a 
novel anti-podoplanin antibody reacting with its platelet-aggregation-stimulating domain. 
Biochem. Biophys. Res. Commun. 2006; 349:1301–1307. [PubMed: 16979138] 

24. Kaneko MK, Kunita A, Abe S, Tsujimoto Y, Fukayama M, Goto K, Sawa Y, Nishioka Y, Kato Y. 
A chimeric anti-podoplanin antibody suppresses tumor metastasis via neutralization and antibody-
dependent cellular cytotoxicity. Cancer Sci. 2012

25. Ochoa-Alvarez JA, Krishnan H, Shen Y, Acharya NK, Han M, McNulty DE, Hasegawa H, Hyodo 
T, Senga T, Geng JG, Kosciuk M, Shin SS, Goydos JS, Temiakov D, Nagele RG, Goldberg GS. 
Plant lectin can target receptors containing sialic Acid, exemplified by podoplanin, to inhibit 
transformed cell growth and migration. PLoS. ONE. 2012; 7:e41845. [PubMed: 22844530] 

26. Takagi S, Sato S, Oh-hara T, Takami M, Koike S, Mishima Y, Hatake K, Fujita N. Platelets 
promote tumor growth and metastasis via direct interaction between Aggrus/podoplanin and 
CLEC-2. PloS one. 2013; 8:e73609. [PubMed: 23991201] 

27. Abe S, Morita Y, Kaneko MK, Hanibuchi M, Tsujimoto Y, Goto H, Kakiuchi S, Aono Y, Huang J, 
Sato S, Kishuku M, Taniguchi Y, Azuma M, Kawazoe K, Sekido Y, Yano S, Akiyama S, Sone S, 
Minakuchi K, Kato Y, Nishioka Y. A novel targeting therapy of malignant mesothelioma using 
anti-podoplanin antibody. Journal of immunology. 2013; 190:6239–6249.

28. Kato Y, Vaidyanathan G, Kaneko MK, Mishima K, Srivastava N, Chandramohan V, Pegram C, 
Keir ST, Kuan CT, Bigner DD, Zalutsky MR. Evaluation of anti-podoplanin rat monoclonal 
antibody NZ-1 for targeting malignant gliomas. Nucl. Med. Biol. 2010; 37:785–794. [PubMed: 
20870153] 

29. Martin-Villar E, Megias D, Castel S, Yurrita MM, Vilaro S, Quintanilla M. Podoplanin binds ERM 
proteins to activate RhoA and promote epithelial-mesenchymal transition. Journal of Cell Science. 
2006; 119:4541–4553. [PubMed: 17046996] 

30. Cheriyan VT, Wang Y, Muthu M, Jamal S, Chen D, Yang H, Polin LA, Tarca AL, Pass HI, Dou 
QP, Sharma S, Wali A, Rishi AK. Disulfiram suppresses growth of the malignant pleural 
mesothelioma cells in part by inducing apoptosis. PLoS One. 2014; 9:e93711. [PubMed: 
24690739] 

31. Jamal S, Cheriyan VT, Muthu M, Munie S, Levi E, Ashour AE, Pass HI, Wali A, Singh M, Rishi 
AK. CARP-1 functional mimetics are a novel class of small molecule inhibitors of malignant 
pleural mesothelioma cells. PLoS One. 2014; 9:e89146. [PubMed: 24598827] 

32. Shen Y, Khusial PR, Li X, Ichikawa H, Moreno AP, Goldberg GS. Src utilizes Cas to block gap 
junctional communication mediated by connexin43. J. Biol. Chem. 2007; 282:18914–18921. 
[PubMed: 17488714] 

33. Shen Y, Jia Z, Nagele RG, Ichikawa H, Goldberg GS. SRC uses Cas to suppress Fhl1 in order to 
promote nonanchored growth and migration of tumor cells. Cancer Research. 2006; 66:1543–
1552. [PubMed: 16452211] 

34. Patwardhan P, Shen Y, Goldberg GS, Miller WT. Individual Cas phosphorylation sites are 
dispensable for processive phosphorylation by Src and cellular transformation. J. Biol. Chem. 
2006; 281:20689–20697. [PubMed: 16707485] 

35. Fujita N, Takagi S. The impact of Aggrus/podoplanin on platelet aggregation and tumor metastasis. 
J. Biochem. 2012

36. Krishnan H, Miller WT, Goldberg GS. SRC points the way to biomarkers and chemotherapeutic 
targets. Genes Cancer. 2012; 3:426–435. [PubMed: 23226580] 

37. Cueni LN, Detmar M. Galectin-8 interacts with podoplanin and modulates lymphatic endothelial 
cell functions. Experimental Cell Research. 2009; 315:1715–1723. [PubMed: 19268462] 

38. Martin-Villar E, Fernandez-Munoz B, Parsons M, Yurrita MM, Megias D, Perez-Gomez E, Jones 
GE, Quintanilla M. Podoplanin Associates with CD44 to Promote Directional Cell Migration. 
Mol. Biol. Cell. 2010; 21:4387–4399. [PubMed: 20962267] 

Krishnan et al. Page 9

Exp Cell Res. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



39. Acton SE, Astarita JL, Malhotra D, Lukacs-Kornek V, Franz B, Hess PR, Jakus Z, Kuligowski M, 
Fletcher AL, Elpek KG, Bellemare-Pelletier A, Sceats L, Reynoso ED, Gonzalez SF, Graham DB, 
Chang J, Peters A, Woodruff M, Kim YA, Swat W, Morita T, Kuchroo V, Carroll MC, Kahn ML, 
Wucherpfennig KW, Turley SJ. Podoplanin-Rich Stromal Networks Induce Dendritic Cell 
Motility via Activation of the C-type Lectin Receptor CLEC-2. Immunity. 2012

40. Tsuneki M, Maruyama S, Yamazaki M, Xu B, Essa A, Abe T, Babkair H, Cheng J, Yamamoto T, 
Saku T. Extracellular heat shock protein A9 is a novel interaction partner of podoplanin in oral 
squamous cell carcinoma cells. Biochemical and biophysical research communications. 2013; 
434:124–130. [PubMed: 23541579] 

41. Griffin SV, Hiromura K, Pippin J, Petermann AT, Blonski MJ, Krofft R, Takahashi S, Kulkarni 
AB, Shankland SJ. Cyclin-dependent kinase 5 is a regulator of podocyte differentiation, 
proliferation, and morphology. Am J Pathol. 2004; 165:1175–1185. [PubMed: 15466384] 

42. Lin H, Chen MC, Chiu CY, Song YM, Lin SY. Cdk5 regulates STAT3 activation and cell 
proliferation in medullary thyroid carcinoma cells. J Biol Chem. 2007; 282:2776–2784. [PubMed: 
17145757] 

43. Liang Q, Li L, Zhang J, Lei Y, Wang L, Liu DX, Feng J, Hou P, Yao R, Zhang Y, Huang B, Lu J. 
CDK5 is essential for TGF-beta1-induced epithelial-mesenchymal transition and breast cancer 
progression. Sci Rep. 2013; 3:2932. [PubMed: 24121667] 

44. Roberts-Galbraith RH, Ohi MD, Ballif BA, Chen JS, McLeod I, McDonald WH, Gygi SP, Yates 
JR 3rd, Gould KL. Dephosphorylation of F-BAR protein Cdc15 modulates its conformation and 
stimulates its scaffolding activity at the cell division site. Mol Cell. 2010; 39:86–99. [PubMed: 
20603077] 

45. Hunter T. Why nature chose phosphate to modify proteins. Philos Trans R Soc Lond B Biol Sci. 
2012; 367:2513–2516. [PubMed: 22889903] 

46. Dephoure N, Gould KL, Gygi SP, Kellogg DR. Mapping and analysis of phosphorylation sites: a 
quick guide for cell biologists. Mol Biol Cell. 2013; 24:535–542. [PubMed: 23447708] 

47. Cheriyan VT, Wang Y, Muthu M, Jamal S, Chen D, Yang H, Polin LA, Tarca AL, Pass HI, Dou 
QP, Sharma S, Wali A, Rishi AK. Disulfiram suppresses growth of the malignant pleural 
mesothelioma cells in part by inducing apoptosis. PloS one. 2014; 9:e93711. [PubMed: 24690739] 

Krishnan et al. Page 10

Exp Cell Res. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• We examined the dynamics of PDPN phosphorylation and its role in cell 

migration.

• PKA and CDK5 phosphorylate the intracellular domain of PDPN.

• PKA can phosphorylate PDPN on S167 or S171.

• CDK5 preferentially phosphorylates PDPN on S171.

• Both S167 and S171 residues on PDPN are phosphorylated to inhibit cell 

motility.
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Figure 1. PKA and CDK5 phosphorylate serine residues in the PDPN intracellular domain
(a) Total protein (input) and protein immunoprecipitated with phosphoserine antiserum (pS 

IP) from homozygous null PdpnKo cells transfected with empty parental vector (EF4) or 

wild type PDPN (WT) was analyzed for PDPN and GAPDH by Western blotting as 

indicated. (b) Peptide containing the entire intracellular region (VVMKKISGRFSP) of 

PDPN was incubated with PKA, CDK5, or both PKA and CDK5 along with [γ-32]ATP for 

10 minutes. Data are shown as picomoles of phosphate incorporated into the PDPN peptide 

(mean+SD, n=2). Asterisks indicate p<0.05 compared to CDK5 treated cells by t-Test.
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Figure 2. PKA and CDK5 phosphorylate either PDPN S167 or S171
Peptide containing the entire intracellular region (VVMKKISGRFSP) of PDPN was 

incubated with PKA, CDK5, or both PKA and CDK5 along with [γ-32]ATP for 10 minutes. 

Representative MS/MS spectrum of PKA and CDK5 treated samples show doubly-charged 

ion (m/z 714.87) corresponding to the phosphorylated PDPN peptide sequence with 

phosphorylation at S167 or S171 as indicated. Observed y-ion and b-ion series confirming 

the peptide sequence and phosphorylation sites are also shown.
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Figure 3. PKA phosphorylates S167 or S171, while CDK5 preferentially phosphorylates S171 in 
the PDPN intracellular domain
Peptide containing the entire PDPN intracellular region was treated with PKA or CDK5 as 

indicated, and analyzed by LC-MS/MS to detect specific phosphorylation sites. Data are 

shown as the percent of PDPN peptide phosphorylated at serine residues position 167 or 171 

based on at least 100 MS spectra counts.
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Figure 4. Both serine residues in the intracellular domain of PDPN are phosphorylated to 
decrease cell migration
(a) PDPN and β-actin were detected by Western Blotting of protein (10 µg/lane) from 

homozygous null Pdpn knock-out mouse embryonic fibroblasts transfected with empty 

parental vectors (EF4), wild type Pdpn (WT), Pdpn with both intracellular serines mutated to 

alanine (AA), Pdpn with both intracellular serines mutated to aspartate (DD), or Pdpn with 

each of the 2 serines mutated to alanine or aspartate (S167A, S167D, S171A, S171D) as 

indicated. (b) Cell migration was measured by wound healing assays, and quantitated as the 

number of cells that entered 400 × 400 µm field in the center of a wound within 18 hours 
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(mean+SEM, n=3). Single, double, and triple asterisks indicate p<0.05, 0.01, or 0.001 by t-

Test compared to EF4 cells, respectively.
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Figure 5. Phosphorylation of specific serines on the PDPN intracellular domain affect cell 
migration
PKA can phosphorylate serines S167 or S171 on the intracellular domain of PDPN, whereas 

CDK5 preferentially phosphorylates S171. However, phosphorylation of both intracellular 

serines on PDPN is required to inhibit PDPN mediated cell migration. Thus, PKA and 

CDK5 may phosphorylate PDPN S167 and S171, respectively, in order to decrease cell 

motility.
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