641 research outputs found

    Simultaneous determination of wave speed and arrival time of reflected waves using the pressure-velocity loop

    Get PDF
    This is the post print version of the article. The official published version can be found at the link below.In a previous paper we demonstrated that the linear portion of the pressure–velocity loop (PU-loop) corresponding to early systole could be used to calculate the local wave speed. In this paper we extend this work to show that determination of the time at which the PU-loop first deviates from linearity provides a convenient way to determine the arrival time of reflected waves (Tr). We also present a new technique using the PU-loop that allows for the determination of wave speed and Tr simultaneously. We measured pressure and flow in elastic tubes of different diameters, where a strong reflection site existed at known distances away form the measurement site. We also measured pressure and flow in the ascending aorta of 11 anaesthetised dogs where a strong reflection site was produced through total arterial occlusion at four different sites. Wave speed was determined from the initial slope of the PU-loop and Tr was determined using a new algorithm that detects the sampling point at which the initial linear part of the PU-loop deviates from linearity. The results of the new technique for detecting Tr were comparable to those determined using the foot-to-foot and wave intensity analysis methods. In elastic tubes Tr detected using the new algorithm was almost identical to that detected using wave intensity analysis and foot-to-foot methods with a maximum difference of 2%. Tr detected using the PU-loop in vivo highly correlated with that detected using wave intensity analysis (r 2 = 0.83, P < 0.001). We conclude that the new technique described in this paper offers a convenient and objective method for detecting Tr, and allows for the dynamic determination of wave speed and Tr, simultaneously

    An assessment of the use of sediment traps for estimating upper ocean particle fluxes

    Get PDF
    Author Posting. © Sears Foundation for Marine Research, 2007. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 65 (2007): 345–416, doi: 10.1357/002224007781567621This review provides an assessment of sediment trap accuracy issues by gathering data to address trap hydrodynamics, the problem of zooplankton "swimmers," and the solubilization of material after collection. For each topic, the problem is identified, its magnitude and causes reviewed using selected examples, and an update on methods to correct for the potential bias or minimize the problem using new technologies is presented. To minimize hydrodynamic biases due to flow over the trap mouth, the use of neutrally buoyant sediment traps is encouraged. The influence of swimmers is best minimized using traps that limit zooplankton access to the sample collection chamber. New data on the impact of different swimmer removal protocols at the US time-series sites HOT and BATS are compared and shown to be important. Recent data on solubilization are compiled and assessed suggesting selective losses from sinking particles to the trap supernatant after collection, which may alter both fluxes and ratios of elements in long term and typically deeper trap deployments. Different methods are needed to assess shallow and short- term trap solubilization effects, but thus far new incubation experiments suggest these impacts to be small for most elements. A discussion of trap calibration methods reviews independent assessments of flux, including elemental budgets, particle abundance and flux modeling, and emphasizes the utility of U-Th radionuclide calibration methods.WG meetings and production of this report was partially supported by the U.S. National Science Foundation via grants to the SCOR. Individuals and science efforts discussed herein were supported by many national science programs, including the U.S. National Science Foundation, Swedish Research Council, the International Atomic Energy Agency through its support of the Marine Environmental Laboratory that also receives support from the Government of the Principality of Monaco, and the Australian Antarctic Science Program. K.B. was supported in part by a WHOI Ocean Life Institute Fellowship

    COLT-Cancer: functional genetic screening resource for essential genes in human cancer cell lines

    Get PDF
    Genome-wide pooled shRNA screens enable global identification of the genes essential for cancer cell survival and proliferation and provide a ‘functional genetic’ map of human cancer to complement genomic studies. Using a lentiviral shRNA library targeting approximately 16 000 human genes and a newly developed scoring approach, we identified essential gene profiles in more than 70 breast, pancreatic and ovarian cancer cell lines. We developed a web-accessible database system for capturing information from each step in our standardized screening pipeline and a gene-centric search tool for exploring shRNA activities within a given cell line or across multiple cell lines. The database consists of a laboratory information and management system for tracking each step of a pooled shRNA screen as well as a web interface for querying and visualization of shRNA and gene-level performance across multiple cancer cell lines. COLT-Cancer Version 1.0 is currently accessible at http://colt.ccbr.utoronto.ca/cancer

    Successful Treatment of Gastrosplenic Fistula Arising from Diffuse Large B-Cell Lymphoma with Chemotherapy: Two Case Reports

    Get PDF
    Gastrosplenic fistula (GSF) is a rare condition arising from gastric or splenic lymphomas. Surgical resection is the most common treatment, as described in previous reports. We report two cases of GSF in diffuse large B-cell lymphoma (DLBCL) patients that were successfully treated with chemotherapy and irradiation without surgical resection. Case 1 was of a 63-year-old man who had primary gastric DLBCL with a large lesion outside the stomach wall, leading to a spontaneous fistula in the spleen. Case 2 was of a 59-year-old man who had primary splenic DLBCL, which proliferated and infiltrated directly into the stomach. In both cases, chemotherapy comprising rituximab + dose-adjusted EPOCH regimen (etoposide, prednisone, vincristine, cyclophosphamide and doxorubicin) was administered. Case 1 had significant bleeding from the lesion of the stomach during the treatment cycle; however, endoscopic hemostasis was achieved. Case 2 developed a fistula between the stomach and the spleen following therapeutic chemotherapy; however, no complications related to the fistula were observed thereafter. In both cases, irradiation was administered, and complete remission was achieved

    Particle Probe of Horava-Lifshitz Gravity

    Full text link
    Kehagias-Sfetsos black hole in Ho\v{r}ava-Lifshitz gravity is probed through particle geodesics. Gravitational force of KS black hole becomes weaker than that of Schwarzschild around horizon and interior space. Particles can be always scattered or trapped in new closed orbits, unlike those falling forever in Schwarzschild black. The properties of null and timelike geodesics are classified with values of coupling constants. The precession rates of the orbits are evaluated. The time trajectories are also classified under different values of coupling constants for both null and timelike geodesics. Physical phenomena that may be observable are discussed.Comment: 10 pages, 8 figure

    Singularities in Horava-Lifshitz theory

    Full text link
    Singularities in (3+1)(3+1)-dimensional Horava-Lifshitz (HL) theory of gravity are studied. These singularities can be divided into scalar, non-scalar curvature, and coordinate singularities. Because of the foliation-preserving diffeomorphisms of the theory, the number of scalars that can be constructed from the extrinsic curvature tensor KijK_{ij}, the 3-dimensional Riemann tensor and their derivatives is much large than that constructed from the 4-dimesnional Riemann tensor and its derivatives in general relativity (GR). As a result, even for the same spacetime, it may be singular in the HL theory but not in GR. Two representative families of solutions with projectability condition are studied, one is the (anti-) de Sitter Schwarzschild solutions, and the other is the Lu-Mei-Pope (LMP) solutions written in a form satisfying the projectability condition - the generalized LMP solutions. The (anti-) de Sitter Schwarzschild solutions are vacuum solutions of both HL theory and GR, while the LMP solutions with projectability condition satisfy the HL equations coupled with an anisotropic fluid with heat flow. It is found that the scalars KK and KijKijK_{ij}K^{ij} are singular only at the center for the de Sitter Schwarzschild solution, but singular at both the center and r=(3M/Λ)1/3 r = (3M/|\Lambda|)^{1/3} for the anti-de Sitter Schwarzschild solution. The singularity at r=(3M/Λ)1/3 r = (3M/|\Lambda|)^{1/3} is absent in GR. In addition, all the generalized LMP solutions have two scalar curvature singularities, located at either r=0r = 0 and r=rs>0r=r_{s} > 0, or r=r1r=r_{1} and r=r2r= r_{2} with r2>r1>0r_{2} > r_{1} > 0, or r=rs>0r=r_{s} > 0 and r=r = \infty, depending on the choice of the free parameter λ\lambda.Comment: Revtex4, six figures. Version to appear in Phys. Lett.

    The Japanese space gravitational wave antenna; DECIGO

    Get PDF
    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. DECIGO is expected to open a new window of observation for gravitational wave astronomy especially between 0.1 Hz and 10 Hz, revealing various mysteries of the universe such as dark energy, formation mechanism of supermassive black holes, and inflation of the universe. The pre-conceptual design of DECIGO consists of three drag-free spacecraft, whose relative displacements are measured by a differential Fabry– Perot Michelson interferometer. We plan to launch two missions, DECIGO pathfinder and pre- DECIGO first and finally DECIGO in 2024

    DECIGO pathfinder

    Get PDF
    DECIGO pathfinder (DPF) is a milestone satellite mission for DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) which is a future space gravitational wave antenna. DECIGO is expected to provide us fruitful insights into the universe, in particular about dark energy, a formation mechanism of supermassive black holes, and the inflation of the universe. Since DECIGO will be an extremely large mission which will formed by three drag-free spacecraft with 1000m separation, it is significant to gain the technical feasibility of DECIGO before its planned launch in 2024. Thus, we are planning to launch two milestone missions: DPF and pre-DECIGO. The conceptual design and current status of the first milestone mission, DPF, are reviewed in this article
    corecore