232 research outputs found

    Supercomputer optimizations for stochastic optimal control applications

    Get PDF
    Supercomputer optimizations for a computational method of solving stochastic, multibody, dynamic programming problems are presented. The computational method is valid for a general class of optimal control problems that are nonlinear, multibody dynamical systems, perturbed by general Markov noise in continuous time, i.e., nonsmooth Gaussian as well as jump Poisson random white noise. Optimization techniques for vector multiprocessors or vectorizing supercomputers include advanced data structures, loop restructuring, loop collapsing, blocking, and compiler directives. These advanced computing techniques and superconducting hardware help alleviate Bellman's curse of dimensionality in dynamic programming computations, by permitting the solution of large multibody problems. Possible applications include lumped flight dynamics models for uncertain environments, such as large scale and background random aerospace fluctuations

    Distinct Sums Over Subsets

    Get PDF

    The Development and Validation of a Generic Instrument, QoDoS, for Assessing the Quality of Decision Making.

    Get PDF
    Introduction: The impact of decision-making during the development and the regulatory review of medicines greatly influences the delivery of new medicinal products. Currently, there is no generic instrument that can be used to assess the quality of decision-making. This study describes the development of the Quality of Decision-Making Orientation Scheme QoDoS© instrument for appraising the quality of decision-making. Methods: Semi-structured interviews about decision-making were carried out with 29 senior decision makers from the pharmaceutical industry (10), regulatory authorities (9) and contract research organizations (10). The interviews offered a qualified understanding of the subjective decision-making approach, influences, behaviors and other factors that impact such processes for individuals and organizations involved in the delivery of new medicines. Thematic analysis of the transcribed interviews was carried out using NVivo8® software. Content validity was carried out using qualitative and quantitative data by an expert panel, which led to the developmental version of the QoDoS. Further psychometric evaluations were performed, including factor analysis, item reduction, reliability testing and construct validation. Results: The thematic analysis of the interviews yielded a 94-item initial version of the QoDoS© with a 5-point Likert scale. The instrument was tested for content validity using a panel of experts for language clarity, completeness, relevance and scaling, resulting in a favorable agreement by panel members with an intra-class correlation coefficient value of 0.89 (95% confidence interval = 0.56, 0.99). A 76-item QoDoS© (version 2) emerged from content validation. Factor analysis produced a 47-item measure with four domains. The 47-item QoDoS© (version 3) showed high internal consistency (n=120, Cronbach’s alpha = 0.89), high reproducibility (n=20, intra-class correlation =0.77) and a mean completion time of 10 min. Reliability testing and construct validation was successfully performed.Peer reviewedFinal Published versio

    ATLAS: A Traffic Load Aware Sensor MAC Design for Collaborative Body Area Sensor Networks

    Get PDF
    In collaborative body sensor networks, namely wireless body area networks (WBANs), each of the physical sensor applications is used to collaboratively monitor the health status of the human body. The applications of WBANs comprise diverse and dynamic traffic loads such as very low-rate periodic monitoring (i.e., observation) data and high-rate traffic including event-triggered bursts. Therefore, in designing a medium access control (MAC) protocol for WBANs, energy conservation should be the primary concern during low-traffic periods, whereas a balance between satisfying high-throughput demand and efficient energy usage is necessary during high-traffic times. In this paper, we design a traffic load-aware innovative MAC solution for WBANs, called ATLAS. The design exploits the superframe structure of the IEEE 802.15.4 standard, and it adaptively uses the contention access period (CAP), contention free period (CFP) and inactive period (IP) of the superframe based on estimated traffic load, by applying a dynamic “wh” (whenever which is required) approach. Unlike earlier work, the proposed MAC design includes load estimation for network load-status awareness and a multi-hop communication pattern in order to prevent energy loss associated with long range transmission. Finally, ATLAS is evaluated through extensive simulations in ns-2 and the results demonstrate the effectiveness of the protocol

    Strand bond performance in prestressed concrete accounting for bondslip

    Full text link
    This paper presents the results of an experimental research program addressing the bond behavior of prestressing strands in pretensioned prestressed concrete members after anchorage failure has occurred. A test methodology based on measuring the prestressing strand force and strand end slip at the specimens free end was employed. Transmission- and anchorage-length tests were performed on several series of prestressed specimens with different embedment lengths using twelve concrete mixes. Average bond stresses along the transmission length and the anchorage length were obtained for specimens with release strengths ranging from 24 MPa to 55 MPa. For the anchorage analysis, a parameter was developed that includes strand slip to be used in determining anchorage length. Based on the test results, an analysis to experimentally substantiate the Stress Waves Theory of Janney has been proposed. Additionally, the potential bond performance of prestressing strands after anchorage failure at the end regions has been suggested.The content of the present paper is based on tests which were conducted in the Institute of Concrete Science and Technology (ICITECH), at Universitat Politecnica of Valencia (Spain), in collaboration with the companies PREVALESA and ISOCRON. Funding for this experimental research work was provided by the Spanish Ministry of Education and Science/Science and Innovation and ERDF (Project BIA2006-05521 and Project BIA2009-12722). The authors wish to thank the above companies as well as the concrete structures laboratory technicians at the Universitat Politecnica of Valencia for their cooperation. Finally, the authors also wish to pay their respects to C.A. Arbelaez.Martí Vargas, JR.; Serna Ros, P.; Hale, WM. (2013). Strand bond performance in prestressed concrete accounting for bondslip. Engineering Structures. 51:236-244. doi:10.1016/j.engstruct.2013.01.023S2362445

    Associations Between Cortical Thickness and Reasoning Differ by Socioeconomic Status in Development

    Get PDF
    Although lower socioeconomic status (SES) is generally negatively associated with performance on cognitive assessments, some children from lower-SES backgrounds perform as well as their peers from higher-SES backgrounds. Yet little research has examined whether the neural correlates of individual differences in cognition vary by SES. The current study explored whether relationships between cortical structure and fluid reasoning differ by SES in development. Fluid reasoning, a non-verbal component of IQ, is supported by a distributed frontoparietal network, with evidence for a specific role of rostrolateral prefrontal cortex (RLPFC). In a sample of 115 4–7-year old children, bilateral thickness of RLPFC differentially related to reasoning by SES: thicker bilateral RLPFC positively correlated with reasoning ability in children from lower-SES backgrounds, but not in children from higher-SES backgrounds. Similar results were found in an independent sample of 59 12–16-year old adolescents. Furthermore, young children from lower-SES backgrounds with strong reasoning skills were the only group to show a positive relationship between RLPFC thickness and age. In sum, we found that relationships between cortical thickness and cognition differ by SES during development

    Quantifying the role of woody debris in providing bioenergetically favorable habitat for juvenile salmon

    Full text link
    The habitat complexity of a riverine ecosystem influences the bioenergetics of drift feeding fish. We coupled hydrodynamic and bioenergetic models to assess the influence of habitat complexity generated by large woody debris (LWD) on the growth potential of juvenile Chinook salmon (Oncorhynchus tshawytscha) in a river that lacked large wood. Simulations indicated how LWD diversified the flow field, creating pronounced velocity gradients, which enhanced fish feeding and resting activities at the sub-meter scale. Fluid drag created by individual wood structures increased under higher wood loading amounts, leading to a 5-19% reduction in the reach-averaged velocity. The reach-scale growth potential was asymptotically related to wood loading, suggesting that the river became saturated with LWD and additional loading would produce minimal benefit for the configurations we simulated. In the scenario we analyzed for illustration, LWD additions could quadruple the potential growth area available before that limit was reached for the configurations selected for demonstration. Wood depletion in the world's rivers has been documented extensively, leading to widespread attempts by river managers to reverse this trend by adding wood to simplified aquatic habitats. However, systematic prediction of the effects of wood on fish growth has not been previously accomplished. We offer a quantitative approach for assessing the influence of wood on habitat potential for fish growth at the microhabitat and reach-scales. © 2014 Elsevier B.V
    corecore