

University of Pennsylvania **ScholarlyCommons**

Operations, Information and Decisions Papers

Wharton Faculty Research

9-1977

Distinct Sums Over Subsets

Floyd Hanson

John M. Steele University of Pennsylvania

Frank Stenger

Follow this and additional works at: http://repository.upenn.edu/oid_papers

Part of the Mathematics Commons

Recommended Citation

Hanson, F., Steele, J. M., & Stenger, F. (1977). Distinct Sums Over Subsets. Proceedings of the American Mathematical Society, 66 (1), 179-180. http://dx.doi.org/10.1090/S0002-9939-1977-0447167-4

This paper is posted at Scholarly Commons. http://repository.upenn.edu/oid_papers/284 For more information, please contact repository @pobox.upenn.edu.

Distinct Sums Over Subsets

DisciplinesMathematics

SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and polished character, for which there is no other outlet.

DISTINCT SUMS OVER SUBSETS

F. HANSON, J. M. STEELE AND F. STENGER

ABSTRACT. A finite set of integers with distinct subset sums has a precisely bounded Dirichlet series.

Let $1 \le a_1 < a_2 < \cdots < a_n$ be a set of integers for which all of the sums $\sum_{i=1}^{n} \epsilon_i a_i$, $\epsilon_i = 0$ or 1, are distinct. It was conjectured by P. Erdös and proved by C. Ryavec that

$$\sum_{i=1}^n \frac{1}{a_i} < 2.$$

We will show that for all real $s \ge 0$,

$$\sum_{i=1}^{n} \left(\frac{1}{a_i} \right)^s < \frac{1}{1 - 2^{-s}} .$$

The hypothesis clearly implies for 0 < x < 1 that

$$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k > (1+x^{a_1})(1+x^{a_2}) \cdot \cdot \cdot (1+x^{a_n})$$

and

$$-\log(1-x) > \sum_{i=1}^{n} \log(1+x^{a_i}),$$

as was observed in [1].

The crucial idea here is that the form $|\log x|^{\beta} dx/x$ is changed only by a constant factor under the substitution $y = x^{a}$, so integrating we have

$$\int_0^1 |\log(1-x)| |\log x|^{\beta} \frac{dx}{x}$$

$$> \int_0^1 \log(1+y) |\log y|^{\beta} \frac{dy}{y} \sum_{i=1}^n \left(\frac{1}{a_i}\right)^{1+\beta}.$$

AMS (MOS) subject classifications (1970). Primary 10J99, 10-01; Secondary 10A40, 10H05.

Received by the editors May 13, 1977.

To calculate the first integral we substitute $x = e^{-u}$, expand $\log(1 - e^{-u})$, and integrate term-by-term to obtain $\Gamma(\beta + 1)\zeta(\beta + 2)$, where ζ is the Riemann zeta function. In the same way the second integral is found to be $\Gamma(\beta + 1)\zeta(\beta + 2)(1 - (\frac{1}{2})^{\beta+1})$. These calculations are valid for all $\beta > -1$, so the theorem follows.

BIBLIOGRAPHY

1. S. J. Benkowski and P. Erdös, On weird and pseudoperfect numbers, Math. Comp. 28 (1974), 617-623.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, B. C., CANADA V6T 1W5