9 research outputs found

    RUNX3 Mediates Suppression of Tumor Growth and Metastasis of Human CCRCC by Regulating Cyclin Related Proteins and TIMP-1

    Get PDF
    Here we presented that the expression of RUNX3 was significantly decreased in 75 cases of clear cell renal cell carcinoma (CCRCC) tissues (p<0.05). Enforced RUNX3 expression mediated 786-O cells to exhibit inhibition of growth, G1 cell-cycle arrest and metastasis in vitro, and to lost tumorigenicity in nude mouse model in vivo. RUNX3-induced growth suppression was found partially to regulate various proteins, including inhibition of cyclinD1, cyclinE, cdk2, cdk4 and p-Rb, but increase of p27Kip1, Rb and TIMP-1. Therefore, RUNX3 had the function of inhibiting the proliferative and metastatic abilities of CCRCC cells by regulating cyclins and TIMP1

    Three-Dimensional Hetero-Integration of Faceted GaN on Si Pillars for Efficient Light Energy Conversion Devices

    No full text
    An important pathway for cost-effective light energy conversion devices, such as solar cells and light emitting diodes, is to integrate III–V (<i>e</i>.<i>g</i>., GaN) materials on Si substrates. Such integration first necessitates growth of high crystalline III–V materials on Si, which has been the focus of many studies. However, the integration also requires that the final III–V/Si structure has a high light energy conversion efficiency. To accomplish these twin goals, we use single-crystalline microsized Si pillars as a seed layer to first grow faceted Si structures, which are then used for the heteroepitaxial growth of faceted GaN films. These faceted GaN films on Si have high crystallinity, and their threading dislocation density is similar to that of GaN grown on sapphire. In addition, the final faceted GaN/Si structure has great light absorption and extraction characteristics, leading to improved performance for GaN-on-Si light energy conversion devices

    Characterization techniques for dye-sensitized solar cells

    No full text
    corecore