113 research outputs found

    Nuclear envelope assembly and dynamics during development

    Get PDF
    The nuclear envelope (NE) protects but also organizes the eukaryotic genome. In this review we will discuss recent literature on how the NE disassembles and reassembles, how it varies in surface area and protein composition and how this translates into chromatin organization and gene expression in the context of animal development

    Pre-assembled Nuclear Pores Insert into the Nuclear Envelope during Early Development

    Get PDF
    SummaryNuclear pore complexes (NPCs) span the nuclear envelope (NE) and mediate nucleocytoplasmic transport. In metazoan oocytes and early embryos, NPCs reside not only within the NE, but also at some endoplasmic reticulum (ER) membrane sheets, termed annulate lamellae (AL). Although a role for AL as NPC storage pools has been discussed, it remains controversial whether and how they contribute to the NPC density at the NE. Here, we show that AL insert into the NE as the ER feeds rapid nuclear expansion in Drosophila blastoderm embryos. We demonstrate that NPCs within AL resemble pore scaffolds that mature only upon insertion into the NE. We delineate a topological model in which NE openings are critical for AL uptake that nevertheless occurs without compromising the permeability barrier of the NE. We finally show that this unanticipated mode of pore insertion is developmentally regulated and operates prior to gastrulation

    NCAM180 Regulates Ric8A Membrane Localization and Potentiates β-Adrenergic Response

    Get PDF
    Cooperation between receptors allows integrated intracellular signaling leading to appropriate physiological responses. The Neural Cell Adhesion Molecule (NCAM) has three main isoforms of 120, 140 and 180 kDa, with adhesive and signaling properties, but their respective functions remains to be fully identified. Here we show that the human NCAM180 intracellular domain is a novel interactor of the human guanosine exchange factor (GEF) Ric8A using the yeast two hybrid system and immunoprecipitation. Furthermore, NCAM, Ric8A and Gαs form a tripartite complex. Colocalization experiments by confocal microscopy revealed that human NCAM180 specifically induces the recruitment of Ric8A to the membrane. In addition, using an in vitro recombinant system, and in vivo by comparing NCAM knock-out mouse brain to NCAM heterozygous and wild type brains, we show that NCAM expression dose dependently regulates Ric8A redistribution in detergent resistent membrane microdomains (DRM). Previous studies have demonstrated essential roles for Ric8 in Gα protein activity at G protein coupled receptors (GPCR), during neurotransmitter release and for asymmetric cell division. We observed that inhibition of Ric8A by siRNA or its overexpression, decreases or increases respectively, cAMP production following β-adrenergic receptor stimulation. Furthermore, in human HEK293T recombinant cells, NCAM180 potentiates the Gαs coupled β-adrenergic receptor response, in a Ric8A dependent manner, whereas NCAM120 or NCAM140 do not. Finally, in mouse hippocampal neurons expressing endogenously NCAM, NCAM is required for the agonist isoproterenol to induce cAMP production, and this requirement depends on Ric8A. These data illustrate a functional crosstalk between a GPCR and an IgCAM in the nervous system

    Identification of unique SUN-interacting nuclear envelope proteins with diverse functions in plants

    Get PDF
    Although a plethora of nuclear envelope (NE) transmembrane proteins (NETs) have been identified in opisthokonts, plant NETs are largely unknown. The only known NET homologues in plants are Sad1/UNC-84 (SUN) proteins, which bind Klarsicht/ANC-1/Syne-1 homology (KASH) proteins. Therefore, de novo identification of plant NETs is necessary. Based on similarities between opisthokont KASH proteins and the only known plant KASH proteins, WPP domain–interacting proteins, we used a computational method to identify the KASH subset of plant NETs. Ten potential plant KASH protein families were identified, and five candidates from four of these families were verified for their NE localization, depending on SUN domain interaction. Of those, Arabidopsis thaliana SINE1 is involved in actin-dependent nuclear positioning in guard cells, whereas its paralogue SINE2 contributes to innate immunity against an oomycete pathogen. This study dramatically expands our knowledge of plant KASH proteins and suggests that plants and opisthokonts have recruited different KASH proteins to perform NE regulatory functions

    Decoding the Regulatory Logic of the Drosophila Male Stem Cell System

    Get PDF
    The niche critically controls stem cell behavior, but its regulatory input at the whole-genome level is poorly understood. We elucidated transcriptional programs of the somatic and germline lineages in the Drosophila testis and genome-wide binding profiles of Zfh-1 and Abd-A expressed in somatic support cells and crucial for fate acquisition of both cell lineages. We identified key roles of nucleoporins and V-ATPase proton pumps and demonstrate their importance in controlling germline development from the support side. To make our dataset publicly available, we generated an interactive analysis tool, which uncovered conserved core genes of adult stem cells across species boundaries. We tested the functional relevance of these genes in the Drosophila testis and intestine and found a high frequency of stem cell defects. In summary, our dataset and interactive platform represent versatile tools for identifying gene networks active in diverse stem cell type

    Quantitative fractographic analysis of impact fracture surfaces of steel R73

    Get PDF
    Macroscopic images offracture surfaces of Charpy test specimens of steel R73 were studied, where bright spots in images represent cleavage facets or ductile dimples, respectively, both in special orientations. Within image analysis, they may be taken for the most significant textural element. Being the brightest patches in the image, they can be extracted by thresholding. Their counts and area distribution are closely related to temperature and impact energy.Выполнены исследования макроизображений поверхностей разрушений образцов Шарпи из стали R73. При специальных условиях ориентации поверхностей разрушения видны яркие участки на изображениях, соответствующие граням скола или ямкам вязкого разрушения. Эти участки могут быть использованы в качестве основного элемента текстуры для обработки изображения. Поскольку эти участки на изображениях являются наиболее яркими, их можно отсеять путем настройки порогового уровня освещенности. Результаты расчета относительной доли их площади тесно коррелируют с температурой и энергией ударного разрушения

    Structure and Assembly of the Nuclear Pore Complex

    No full text
    Nuclear pore complexes (NPCs) mediate nucleocytoplasmic exchange.They are exceptionally large protein complexes that fuse the inner andouter nuclear membranes to form channels across the nuclear envelope.About 30 different protein components, termed nucleoporins, assemble inmultiple copies into an intricate cylindrical architecture. Here, we reviewour current knowledge of the structure of nucleoporins and how those cometogether in situ. We delineate architectural principles on several hierarchicalorganization levels, including isoforms, posttranslational modifications, nu-cleoporins, and higher-order oligomerization of nucleoporin subcomplexes.We discuss how cells exploit this modularity to faithfully assemble NPC
    corecore