1,489 research outputs found

    Combining Google Earth and GIS mapping technologies in a dengue surveillance system for developing countries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dengue fever is a mosquito-borne illness that places significant burden on tropical developing countries with unplanned urbanization. A surveillance system using Google Earth and GIS mapping technologies was developed in Nicaragua as a management tool.</p> <p>Methods and Results</p> <p>Satellite imagery of the town of Bluefields, Nicaragua captured from Google Earth was used to create a base-map in ArcGIS 9. Indices of larval infestation, locations of tire dumps, cemeteries, large areas of standing water, etc. that may act as larval development sites, and locations of the homes of dengue cases collected during routine epidemiologic surveying were overlaid onto this map. Visual imagery of the location of dengue cases, larval infestation, and locations of potential larval development sites were used by dengue control specialists to prioritize specific neighborhoods for targeted control interventions.</p> <p>Conclusion</p> <p>This dengue surveillance program allows public health workers in resource-limited settings to accurately identify areas with high indices of mosquito infestation and interpret the spatial relationship of these areas with potential larval development sites such as garbage piles and large pools of standing water. As a result, it is possible to prioritize control strategies and to target interventions to highest risk areas in order to eliminate the likely origin of the mosquito vector. This program is well-suited for resource-limited settings since it utilizes readily available technologies that do not rely on Internet access for daily use and can easily be implemented in many developing countries for very little cost.</p

    Resampling methods for parameter-free and robust feature selection with mutual information

    Get PDF
    Combining the mutual information criterion with a forward feature selection strategy offers a good trade-off between optimality of the selected feature subset and computation time. However, it requires to set the parameter(s) of the mutual information estimator and to determine when to halt the forward procedure. These two choices are difficult to make because, as the dimensionality of the subset increases, the estimation of the mutual information becomes less and less reliable. This paper proposes to use resampling methods, a K-fold cross-validation and the permutation test, to address both issues. The resampling methods bring information about the variance of the estimator, information which can then be used to automatically set the parameter and to calculate a threshold to stop the forward procedure. The procedure is illustrated on a synthetic dataset as well as on real-world examples

    Antiretroviral Drug Resistance Testing in Adult HIV-1 Infection: 2008 Recommendations of an International AIDS Society-USA Panel

    Get PDF
    Resistance to antiretroviral drugs remains an important limitation to successful human immunodeficiency virus type 1 (HIV-1) therapy. Resistance testing can improve treatment outcomes for infected individuals. The availability of new drugs from various classes, standardization of resistance assays, and the development of viral tropism tests necessitate new guidelines for resistance testing. The International AIDS Society-USA convened a panel of physicians and scientists with expertise in drug-resistant HIV-1, drug management, and patient care to review recently published data and presentations at scientific conferences and to provide updated recommendations. Whenever possible, resistance testing is recommended at the time of HIV infection diagnosis as part of the initial comprehensive patient assessment, as well as in all cases of virologic failure. Tropism testing is recommended whenever the use of chemokine receptor 5 antagonists is contemplated. As the roll out of antiretroviral therapy continues in developing countries, drug resistance monitoring for both subtype B and non-subtype B strains of HIV will become increasingly importan

    Immune Activation While on Potent Antiretroviral Therapy Can Predict Subsequent CD4+ T-Cell Increases Through 15 Years of Treatment

    Get PDF
    While persistent T-cell activation has been cross-sectionally associated with poor CD4+ T-cell restoration in HIV-infected individuals maintaining antiretroviral treatment (ART)–mediated viral suppression, it remains unclear whether CD8+ T-cell activation is of predictive effect on CD4+ T-cell recovery

    The Micro-Jansky Sky at 8.4 GHz

    Get PDF
    We present the results from two radio integrations at 8.4 GHz using the VLA. One of the fields, at 13h,+43d (SA13 field), has an rms noise level of 1.49 microJy and is the deepest radio image yet made. Thirty-four sources in a complete sample were detected above 7.5 microJy and 25 are optically identified to a limit of I=25.8, using our deep HST and ground-based images. The radio sources are usually located within 0.5" (typically 5 kpc) of a galaxy nucleus, and generally have a diameter less than 2.5". The second field at 17h, +50d (Hercules Field) has an rms noise of 35 microJy and contains 10 sources. We have also analyzed a complete flux density-limited sample at 8.4 GHz of 89 sources from five deep radio surveys, including the Hubble deep field. Half of all the optical counterparts are with galaxies brighter than I=23 mag, but 20% are fainter than I=25.5 mag. We confirm the tendency for the micro-Jansky radio sources to prefer multi-galaxy systems. The distribution of the radio spectral index between 1.4 and 8.4 GHz peaks at alpha = -0.75~ with a median value of -0.6. The average spectral index becomes steeper (lower values) for sources below 35 microJy, and for sources identified with optical counterparts fainter than I=25.5 mag. The differential radio count between 7.5 and 1000 microJy has a slope of -2.11 +/-0.13 and a surface density of 0.64 sources per square-arcmin with flux density greater than $7.5 microJy.Comment: 21 pages, 8 figure

    DustPedia: Multiwavelength photometry and imagery of 875 nearby galaxies in 42 ultraviolet-microwave bands

    Get PDF
    Aims. The DustPedia project is capitalising on the legacy of the Herschel Space Observatory, using cutting-edge modelling techniques to study dust in the 875 DustPedia galaxies – representing the vast majority of extended galaxies within 3000 km s-1 that were observed by Herschel. This work requires a database of multiwavelength imagery and photometry that greatly exceeds the scope (in terms of wavelength coverage and number of galaxies) of any previous local-Universe survey. Methods. We constructed a database containing our own custom Herschel reductions, along with standardised archival observations from GALEX, SDSS, DSS, 2MASS, WISE, Spitzer, and Planck. Using these data, we performed consistent aperture-matched photometry, which we combined with external supplementary photometry from IRAS and Planck. Results. We present our multiwavelength imagery and photometry across 42 UV-microwave bands for the 875 DustPedia galaxies. Our aperture-matched photometry, combined with the external supplementary photometry, represents a total of 21 857 photometric measurements. A typical DustPedia galaxy has multiwavelength photometry spanning 25 bands. We also present the Comprehensive & Adaptable Aperture Photometry Routine (CAAPR), the pipeline we developed to carry out our aperture-matched photometry. CAAPR is designed to produce consistent photometry for the enormous range of galaxy and observation types in our data. In particular, CAAPR is able to determine robust cross-compatible uncertainties, thanks to a novel method for reliably extrapolating the aperture noise for observations that cover a very limited amount of background. Our rich database of imagery and photometry is being made available to the community

    An Analysis of Errors in Graph-Based Keypoint Matching and Proposed Solutions

    Get PDF
    International audienceAn error occurs in graph-based keypoint matching when key-points in two different images are matched by an algorithm but do not correspond to the same physical point. Most previous methods acquire keypoints in a black-box manner, and focus on developing better algorithms to match the provided points. However to study the complete performance of a matching system one has to study errors through the whole matching pipeline, from keypoint detection, candidate selection to graph optimisation. We show that in the full pipeline there are six different types of errors that cause mismatches. We then present a matching framework designed to reduce these errors. We achieve this by adapting keypoint detectors to better suit the needs of graph-based matching, and achieve better graph constraints by exploiting more information from their keypoints. Our framework is applicable in general images and can handle clutter and motion discontinuities. We also propose a method to identify many mismatches a posteriori based on Left-Right Consistency inspired by stereo matching due to the asymmetric way we detect keypoints and define the graph
    • …
    corecore