3,675 research outputs found

    SGAN: An Alternative Training of Generative Adversarial Networks

    Full text link
    The Generative Adversarial Networks (GANs) have demonstrated impressive performance for data synthesis, and are now used in a wide range of computer vision tasks. In spite of this success, they gained a reputation for being difficult to train, what results in a time-consuming and human-involved development process to use them. We consider an alternative training process, named SGAN, in which several adversarial "local" pairs of networks are trained independently so that a "global" supervising pair of networks can be trained against them. The goal is to train the global pair with the corresponding ensemble opponent for improved performances in terms of mode coverage. This approach aims at increasing the chances that learning will not stop for the global pair, preventing both to be trapped in an unsatisfactory local minimum, or to face oscillations often observed in practice. To guarantee the latter, the global pair never affects the local ones. The rules of SGAN training are thus as follows: the global generator and discriminator are trained using the local discriminators and generators, respectively, whereas the local networks are trained with their fixed local opponent. Experimental results on both toy and real-world problems demonstrate that this approach outperforms standard training in terms of better mitigating mode collapse, stability while converging and that it surprisingly, increases the convergence speed as well

    Occam's hammer: a link between randomized learning and multiple testing FDR control

    Full text link
    We establish a generic theoretical tool to construct probabilistic bounds for algorithms where the output is a subset of objects from an initial pool of candidates (or more generally, a probability distribution on said pool). This general device, dubbed "Occam's hammer'', acts as a meta layer when a probabilistic bound is already known on the objects of the pool taken individually, and aims at controlling the proportion of the objects in the set output not satisfying their individual bound. In this regard, it can be seen as a non-trivial generalization of the "union bound with a prior'' ("Occam's razor''), a familiar tool in learning theory. We give applications of this principle to randomized classifiers (providing an interesting alternative approach to PAC-Bayes bounds) and multiple testing (where it allows to retrieve exactly and extend the so-called Benjamini-Yekutieli testing procedure).Comment: 13 pages -- conference communication type forma

    Knowledge Transfer with Jacobian Matching

    Full text link
    Classical distillation methods transfer representations from a "teacher" neural network to a "student" network by matching their output activations. Recent methods also match the Jacobians, or the gradient of output activations with the input. However, this involves making some ad hoc decisions, in particular, the choice of the loss function. In this paper, we first establish an equivalence between Jacobian matching and distillation with input noise, from which we derive appropriate loss functions for Jacobian matching. We then rely on this analysis to apply Jacobian matching to transfer learning by establishing equivalence of a recent transfer learning procedure to distillation. We then show experimentally on standard image datasets that Jacobian-based penalties improve distillation, robustness to noisy inputs, and transfer learning

    Deep Occlusion Reasoning for Multi-Camera Multi-Target Detection

    Full text link
    People detection in single 2D images has improved greatly in recent years. However, comparatively little of this progress has percolated into multi-camera multi-people tracking algorithms, whose performance still degrades severely when scenes become very crowded. In this work, we introduce a new architecture that combines Convolutional Neural Nets and Conditional Random Fields to explicitly model those ambiguities. One of its key ingredients are high-order CRF terms that model potential occlusions and give our approach its robustness even when many people are present. Our model is trained end-to-end and we show that it outperforms several state-of-art algorithms on challenging scenes

    Multi-Modal Mean-Fields via Cardinality-Based Clamping

    Get PDF
    Mean Field inference is central to statistical physics. It has attracted much interest in the Computer Vision community to efficiently solve problems expressible in terms of large Conditional Random Fields. However, since it models the posterior probability distribution as a product of marginal probabilities, it may fail to properly account for important dependencies between variables. We therefore replace the fully factorized distribution of Mean Field by a weighted mixture of such distributions, that similarly minimizes the KL-Divergence to the true posterior. By introducing two new ideas, namely, conditioning on groups of variables instead of single ones and using a parameter of the conditional random field potentials, that we identify to the temperature in the sense of statistical physics to select such groups, we can perform this minimization efficiently. Our extension of the clamping method proposed in previous works allows us to both produce a more descriptive approximation of the true posterior and, inspired by the diverse MAP paradigms, fit a mixture of Mean Field approximations. We demonstrate that this positively impacts real-world algorithms that initially relied on mean fields.Comment: Submitted for review to CVPR 201
    • …
    corecore