98 research outputs found

    Fast-neutron induced background in LaBr3:Ce detectors

    Full text link
    The response of a scintillation detector with a cylindrical 1.5-inch LaBr3:Ce crystal to incident neutrons has been measured in the energy range En = 2-12 MeV. Neutrons were produced by proton irradiation of a Li target at Ep = 5-14.6 MeV with pulsed proton beams. Using the time-of-flight information between target and detector, energy spectra of the LaBr3:Ce detector resulting from fast neutron interactions have been obtained at 4 different neutron energies. Neutron-induced gamma rays emitted by the LaBr3:Ce crystal were also measured in a nearby Ge detector at the lowest proton beam energy. In addition, we obtained data for neutron irradiation of a large-volume high-purity Ge detector and of a NE-213 liquid scintillator detector, both serving as monitor detectors in the experiment. Monte-Carlo type simulations for neutron interactions in the liquid scintillator, the Ge and LaBr3:Ce crystals have been performed and compared with measured data. Good agreement being obtained with the data, we present the results of simulations to predict the response of LaBr3:Ce detectors for a range of crystal sizes to neutron irradiation in the energy range En = 0.5-10 MeVComment: 28 pages, 10 figures, 4 Table

    High precision microlensing maps of the Galactic bulge

    Full text link
    We present detailed maps of the microlensing optical depth and event density over an area of 195 sq. deg towards the Galactic bulge. The maps are computed from synthetic stellar catalogues generated from the Besancon Galaxy Model, which comprises four stellar populations and a three-dimensional extinction map calibrated against the Two-Micron All-Sky Survey. The optical depth maps have a resolution of 15 arcminutes, corresponding to the angular resolution of the extinction map. We compute optical depth and event density maps for all resolved sources above I=19, for unresolved (difference image) sources magnified above this limit, and for bright standard candle sources in the bulge. We show that the resulting optical depth contours are dominated by extinction effects, exhibiting fine structure in stark contrast to previous theoretical optical depth maps. Optical depth comparisons between Galactic models and optical microlensing survey measurements cannot safely ignore extinction or assume it to be smooth. We show how the event distribution for hypothetical J and K-band microlensing surveys, using existing ground-based facilities such as VISTA, UKIRT or CFHT, would be much less affected by extinction, especially in the K band. The near infrared provides a substantial sensitivity increase over current I-band surveys and a more faithful tracer of the underlying stellar distribution, something which upcoming variability surveys such as VVV will be able to exploit. Synthetic population models offer a promising way forward to fully exploit large microlensing datasets for Galactic structure studies.Comment: 8 pages, submitted to MNRA

    The EROS2 search for microlensing events towards the spiral arms: the complete seven season results

    Get PDF
    The EROS-2 project has been designed to search for microlensing events towards any dense stellar field. The densest parts of the Galactic spiral arms have been monitored to maximize the microlensing signal expected from the stars of the Galactic disk and bulge. 12.9 million stars have been monitored during 7 seasons towards 4 directions in the Galactic plane, away from the Galactic center. A total of 27 microlensing event candidates have been found. Estimates of the optical depths from the 22 best events are provided. A first order interpretation shows that simple Galactic models with a standard disk and an elongated bulge are in agreement with our observations. We find that the average microlensing optical depth towards the complete EROS-cataloged stars of the spiral arms is τˉ=0.51±.13×106\bar{\tau} =0.51\pm .13\times 10^{-6}, a number that is stable when the selection criteria are moderately varied. As the EROS catalog is almost complete up to IC=18.5I_C=18.5, the optical depth estimated for the sub-sample of bright target stars with IC<18.5I_C<18.5 (τˉ=0.39±>.11×106\bar{\tau}=0.39\pm >.11\times 10^{-6}) is easier to interpret. The set of microlensing events that we have observed is consistent with a simple Galactic model. A more precise interpretation would require either a better knowledge of the distance distribution of the target stars, or a simulation based on a Galactic model. For this purpose, we define and discuss the concept of optical depth for a given catalog or for a limiting magnitude.Comment: 22 pages submitted to Astronomy & Astrophysic

    Discovery of a peculiar Cepheid-like star towards the northern edge of the Small Magellanic Cloud

    Full text link
    For seven years, the EROS-2 project obtained a mass of photometric data on variable stars. We present a peculiar Cepheid-like star, in the direction of the Small Magellanic Cloud, which demonstrates unusual photometric behaviour over a short time interval. We report on data of the photometry acquired by the MARLY telescope and spectroscopy from the EFOSC instrument for this star, called EROS2 J005135-714459(sm0060n13842), which resembles the unusual Cepheid HR 7308. The light curve of our target is analysed using the Analysis of Variance method to determine a pulsational period of 5.5675 days. A fit of time-dependent Fourier coefficients is performed and a search for proper motion is conducted. The light curve exhibits a previously unobserved and spectacular change in both mean magnitude and amplitude, which has no clear theoretical explanation. Our analysis of the spectrum implies a radial velocity of 104 km s1^{-1} and a metallicity of -0.4±\pm0.2 dex. In the direction of right ascension, we measure a proper motion of 17.4±\pm6.0 mas yr1^{-1} using EROS astrometry, which is compatible with data from the NOMAD catalogue. The nature of EROS2 J005135-714459(sm0060n13842) remains unclear. For this star, we may have detected a non-zero proper motion for this star, which would imply that it is a foreground object. Its radial velocity, pulsational characteristics, and photometric data, however, suggest that it is instead a Cepheid-like object located in the SMC. In such a case, it would present a challenge to conventional Cepheid models.Comment: Correction of typos in the abstrac

    R Coronae Borealis stars in the Galactic Bulge discovered by EROS-2

    Full text link
    Rare types of variable star may give unique insight into short-lived stages of stellar evolution. The systematic monitoring of millions of stars and advanced light curve analysis techniques of microlensing surveys make them ideal for discovering also such rare variable stars. One example is the R Coronae Borealis (RCB) stars, a rare type of evolved carbon-rich supergiant. We have conducted a systematic search of the EROS-2 database for the Galactic catalogue Bulge and spiral arms to find Galactic RCB stars. The light curves of \sim100 million stars, monitored for 6.7 years (from July 1996 to February 2003), have been analysed to search for the main signature of RCB stars, large and rapid drops in luminosity. Follow-up spectroscopy has been used to confirm the photometric candidates. We have discovered 14 new RCB stars, all in the direction of the Galactic Bulge, bringing the total number of confirmed Galactic RCB stars to about 51. After reddening correction, the colours and absolute magnitudes of at least 9 of the stars are similar to those of Magellanic RCB stars. This suggests that these stars are in fact located in the Galactic Bulge, making them the first RCB stars discovered in the Bulge. The localisation of the 5 remaining RCBs is more uncertain: 4 are either located behind the Bulge at an estimated maximum distance of 14 kpc or have an unusual thick circumstellar shell; the other is a DY Per RCB which may be located in the Bulge, even if it is fainter than the known Magellanic DY Per. From the small scale height found using the 9 new Bulge RCBs, 61<hBulgeRCB<24661<h^{RCB}_{Bulge}<246 pc (95% C.L.), we conclude that the RCB stars follow a disk-like distribution inside the Bulge.Comment: 20 pages, 26 figures, Accepted in A&

    Removing the Microlensing Blending-Parallax Degeneracy Using Source Variability

    Full text link
    Microlensing event MACHO 97-SMC-1 is one of the rare microlensing events for which the source is a variable star, simply because most variable stars are systematically eliminated from microlensing studies. Using observational data for this event, we show that the intrinsic variability of a microlensed star is a powerful tool to constrain the nature of the lens by breaking the degeneracy between the microlens parallax and the blended light. We also present a statistical test for discriminating the location of the lens based on the \chi^2 contours of the vector \Lambda, the inverse of the projected velocity. We find that while SMC self lensing is somewhat favored over halo lensing, neither location can be ruled out with good confidence.Comment: 15 text pages + 2 tables + 7 figures. Published in the Astrophysical Journa

    Search for new resonant states in 10C and 11C and their impact on the cosmological lithium problem

    Full text link
    The observed primordial 7Li abundance in metal-poor halo stars is found to be lower than its Big-Bang nucleosynthesis (BBN) calculated value by a factor of approximately three. Some recent works suggested the possibility that this discrepancy originates from missing resonant reactions which would destroy the 7Be, parent of 7Li. The most promising candidate resonances which were found include a possibly missed 1- or 2- narrow state around 15 MeV in the compound nucleus 10C formed by 7Be+3He and a state close to 7.8 MeV in the compound nucleus 11C formed by 7Be+4He. In this work, we studied the high excitation energy region of 10C and the low excitation energy region in 11C via the reactions 10B(3He,t)10C and 11B(3He,t)11C, respectively, at the incident energy of 35 MeV. Our results for 10C do not support 7Be+3He as a possible solution for the 7Li problem. Concerning 11C results, the data show no new resonances in the excitation energy region of interest and this excludes 7Be+4He reaction channel as an explanation for the 7Li deficit.Comment: Accepted for publication in Phys. Rev. C (Rapid Communication

    Blending in Gravitational Microlensing Experiments: Source Confusion And Related Systematics

    Get PDF
    Gravitational microlensing surveys target very dense stellar fields in the local group. As a consequence the microlensed source stars are often blended with nearby unresolved stars. The presence of `blending' is a cause of major uncertainty when determining the lensing properties of events towards the Galactic centre. After demonstrating empirical cases of blending we utilize Monte Carlo simulations to probe the effects of blending. We generate artificial microlensing events using an HST luminosity function convolved to typical ground-based seeing, adopting a range of values for the stellar density and seeing. We find that a significant fraction of bright events are blended, contrary to the oft-quoted assumption that bright events should be free from blending. We probe the effect that this erroneous assumption has on both the observed event timescale distribution and the optical depth, using realistic detection criteria relevent to the different surveys. Importantly, under this assumption the latter quantity appears to be reasonably unaffected across our adopted values for seeing and density. The timescale distribution is however biased towards smaller values, even for the least dense fields. The dominant source of blending is from lensing of faint source stars, rather than lensing of bright source stars blended with nearby fainter stars. We also explore other issues, such as the centroid motion of blended events and the phenomena of `negative' blending. Furthermore, we breifly note that blending can affect the determination of the centre of the red clump giant region from an observed luminosity function. This has implications for a variety of studies, e.g. mapping extinction towards the bulge and attempts to constrain the parameters of the Galactic bar through red clump giant number counts. (Abridged)Comment: 18 pages, 10 figures. MNRAS (in press

    Gamma ray production cross sections in proton induced reactions on natural Mg, Si and Fe targets over the proton energy range 30 up to 66 MeV

    Full text link
    Gamma-ray excitation functions have been measured for 30, 42, 54 and 66 MeV proton beams accelerated onto C + O (Mylar), Mg, Si, and Fe targets of astrophysical interest at the separate-sector cyclotron of iThemba LABS in Somerset West (Cape Town, South Africa). A large solid angle, high energy resolution detection system of the Eurogam type was used to record Gamma-ray energy spectra. Derived preliminary results of Gamma-ray line production cross sections for the Mg, Si and Fe target nuclei are reported and discussed. The current cross section data for known, intense Gamma-ray lines from these nuclei consistently extend to higher proton energies previous experimental data measured up to Ep ~ 25 MeV at the Orsay and Washington tandem accelerators. Data for new Gamma-ray lines observed for the first time in this work are also reported.Comment: 11 pages, 6 figures. IOP Institute of Physics Conference Nuclear Physics in Astrophysics VII, 28th EPF Nuclear Physics Divisional Conference, May 18-22 2015, York, U

    Using microlensed quasars to probe the structure of the Milky Way

    Full text link
    This paper presents an investigation into the gravitational microlensing of quasars by stars and stellar remnants in the Milky Way. We present predictions for the all-sky microlensing optical depth, time-scale distributions and event rates for future large-area sky surveys. As expected, the total event rate increases rapidly with increasing magnitude limit, reflecting the fact that the number density of quasars is a steep function of magnitude. Surveys such as Pan-STARRS and LSST should be able to detect more than ten events per year, with typical event durations of around one month. Since microlensing of quasar sources suffers from fewer degeneracies than lensing of Milky Way sources, they could be used as a powerful tool for recovering the mass of the lensing object in a robust, often model-independent, manner. As a consequence, for a subset of these events it will be possible to directly `weigh' the star (or stellar remnant) that is causing the lensing signal, either through higher order microlensing effects and/or high-precision astrometric observations of the lens star (using, for example, Gaia or SIM-lite). This means that such events could play a crucial role in stellar astronomy. Given the current operational timelines for Pan-STARRS and LSST, by the end of the decade they could potentially detect up to 100 events. Although this is still too few events to place detailed constraints on Galactic models, consistency checks can be carried out and such samples could lead to exciting and unexpected discoveries.Comment: 11 pages, 8 figures. MNRAS (in press). Minor revisions according to referee's report; mainly presentational issues and clarification of a few items in the discussion; results and conclusions remain unchange
    corecore